论文标题

从照片中建模时尚影响

Modeling Fashion Influence from Photos

论文作者

Al-Halah, Ziad, Grauman, Kristen

论文摘要

服装风格的演变及其在世界范围内的迁移很有趣,但很难定量描述。我们建议从目录和社交媒体照片中发现和量化时尚影响。我们沿两个渠道探索时尚影响力:地理位置和时尚品牌。我们介绍了一种方法,该方法检测了这些实体中哪些在传播风格方面影响哪些实体。然后,我们利用发现的影响模式来告知一个新颖的预测模型,该模型可以预测任何给定的城市或品牌中任何给定风格的未来流行。为了展示我们的想法,我们利用来自44个主要城市的770万个Instagram照片的公共大规模数据集(其中有可变频率的样式)以及41k Amazon产品照片(在其中购买了可变频率的样式)。我们的模型直接从图像数据中学到样式如何在位置之间移动以及某些品牌如何以可预测的方式影响彼此的设计。发现的影响关系揭示了城市和品牌如何为从图像推断出的各种视觉样式发挥时尚影响。此外,提议的预测模型可实现最新的结果,以实现挑战性的预测任务。我们的结果表明,接地视觉样式进化在空间和时间上的优势,这是第一次量化品牌间和城市间影响的传播。

The evolution of clothing styles and their migration across the world is intriguing, yet difficult to describe quantitatively. We propose to discover and quantify fashion influences from catalog and social media photos. We explore fashion influence along two channels: geolocation and fashion brands. We introduce an approach that detects which of these entities influence which other entities in terms of propagating their styles. We then leverage the discovered influence patterns to inform a novel forecasting model that predicts the future popularity of any given style within any given city or brand. To demonstrate our idea, we leverage public large-scale datasets of 7.7M Instagram photos from 44 major world cities (where styles are worn with variable frequency) as well as 41K Amazon product photos (where styles are purchased with variable frequency). Our model learns directly from the image data how styles move between locations and how certain brands affect each other's designs in a predictable way. The discovered influence relationships reveal how both cities and brands exert and receive fashion influence for an array of visual styles inferred from the images. Furthermore, the proposed forecasting model achieves state-of-the-art results for challenging style forecasting tasks. Our results indicate the advantage of grounding visual style evolution both spatially and temporally, and for the first time, they quantify the propagation of inter-brand and inter-city influences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源