论文标题

量子状态测量的储层计算方法

Reservoir Computing Approach to Quantum State Measurement

论文作者

Angelatos, Gerasimos, Khan, Saeed, Türeci, Hakan E.

论文摘要

有效的量子态测量对于从量子系统中提取的信息最大化很重要。特别是对于多量量子处理器,用于快速和高保真读数的可扩展体系结构的开发仍然是一个关键的未解决问题。在这里,我们建议储层计算作为用于超导多数系统的量子测量的资源有效解决方案。我们考虑一个小的Josephson参数振荡器网络,该网络可以用最小的设备开销和与测量的量子系统相同的平台实现。我们从理论上分析了该KERR网络作为储层计算机的操作,以对具有量子统计特征的随机时间相关信号进行分类。我们将此储层计算机应用于联合多量读数的测量轨迹的多项式分类的任务。对于在现实条件下的两数分色散测量,我们仅使用2到五个储层节点来证明分类可靠地超过最佳线性滤波器的分类,同时需要校准数据\ TextEndEndash {}少于单个州的单个测量值。我们通过分析网络动力学并开发储层处理的直观图片来理解这种出色的性能。最后,我们演示了如何操作该设备以同样有效性和易于校准,以执行两量态状态断层扫描和连续的平价监测。该储层处理器避免了其他深度学习框架共有的计算密集型培训,并且可以作为一种集成的低温超导设备实现,用于在计算边缘的量子信号的低延迟处理。

Efficient quantum state measurement is important for maximizing the extracted information from a quantum system. For multi-qubit quantum processors in particular, the development of a scalable architecture for rapid and high-fidelity readout remains a critical unresolved problem. Here we propose reservoir computing as a resource-efficient solution to quantum measurement of superconducting multi-qubit systems. We consider a small network of Josephson parametric oscillators, which can be implemented with minimal device overhead and in the same platform as the measured quantum system. We theoretically analyze the operation of this Kerr network as a reservoir computer to classify stochastic time-dependent signals subject to quantum statistical features. We apply this reservoir computer to the task of multinomial classification of measurement trajectories from joint multi-qubit readout. For a two-qubit dispersive measurement under realistic conditions we demonstrate a classification fidelity reliably exceeding that of an optimal linear filter using only two to five reservoir nodes, while simultaneously requiring far less calibration data \textendash{} as little as a single measurement per state. We understand this remarkable performance through an analysis of the network dynamics and develop an intuitive picture of reservoir processing generally. Finally, we demonstrate how to operate this device to perform two-qubit state tomography and continuous parity monitoring with equal effectiveness and ease of calibration. This reservoir processor avoids computationally intensive training common to other deep learning frameworks and can be implemented as an integrated cryogenic superconducting device for low-latency processing of quantum signals on the computational edge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源