论文标题

确切的核定标准,完成和分解,用于随机过度过度张力张量

Exact nuclear norm, completion and decomposition for random overcomplete tensors via degree-4 SOS

论文作者

Kivva, Bohdan, Potechin, Aaron

论文摘要

在本文中,我们表明,灵感来自学位$ 4 $ SOS启发的简单半决赛程序可以准确地解决具有随机不对称组件的张量张量的张量核定标准,张量分解和张量的完成问题。更确切地说,对于张量核定常和张量分解,我们表明W.H.P.这些半决赛可以与$ M \ leq n^{3/2}/polylog(n)$随机不对称组件一起找到$(n \ times n \ times n)$ - tensor $ \ mathcal {t} $的核标准和组件。与大多数以前的算法不同,我们的算法为分解提供了证书,不需要关于分解中的组件数量的知识,也不需要对分解中系数的大小进行任何假设。作为副产品,我们表明W.H.P.核标准分解与具有$ M \ leq n^{3/2}/polygog(n)$随机不对称组件的张量的最低等级分解完全一致。 为了完成张量,我们证明W.H.P.由Potechin&Steurer(2017)引入的半金融程序,用于具有正交组件的张量,可以精确地恢复$(N \ times n \ times n \ times n)$ -Tensor $ \ MATHCAL {t} $,带有$ M $随机不对称组件,仅从$ n^{3/2} m polylog(N)$ polylog(n)$ polylog(n)中。对于非正交张量,这改善了对所有先前已知的算法所需的恢复所需条目数量的依赖性,并为超级稳定式的张力完成提供了第一个理论保证。

In this paper we show that simple semidefinite programs inspired by degree $4$ SOS can exactly solve the tensor nuclear norm, tensor decomposition, and tensor completion problems on tensors with random asymmetric components. More precisely, for tensor nuclear norm and tensor decomposition, we show that w.h.p. these semidefinite programs can exactly find the nuclear norm and components of an $(n\times n\times n)$-tensor $\mathcal{T}$ with $m\leq n^{3/2}/polylog(n)$ random asymmetric components. Unlike most of the previous algorithms, our algorithm provides a certificate for the decomposition, does not require knowledge about the number of components in the decomposition and does not make any assumptions on the sizes of the coefficients in the decomposition. As a byproduct, we show that w.h.p. the nuclear norm decomposition exactly coincides with the minimum rank decomposition for tensors with $m\leq n^{3/2}/polylog(n)$ random asymmetric components. For tensor completion, we show that w.h.p. the semidefinite program, introduced by Potechin & Steurer (2017) for tensors with orthogonal components, can exactly recover an $(n\times n\times n)$-tensor $\mathcal{T}$ with $m$ random asymmetric components from only $n^{3/2}m polylog(n)$ randomly observed entries. For non-orthogonal tensors, this improves the dependence on $m$ of the number of entries needed for exact recovery over all previously known algorithms and provides the first theoretical guarantees for exact tensor completion in the overcomplete regime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源