论文标题

链接多项式是否检测到全球双曲线空间中的因果关系?

Do Link Polynomials Detect Causality In Globally Hyperbolic Spacetimes?

论文作者

Allen, Samantha, Swenberg, Jacob H.

论文摘要

令$ x $为$(2+1)$ - 尺寸全球双曲线时空,带有cauchy Surface $σ$,其通用封面是同型对$ \ Mathbb {r}^2 $。我们提供了经验证据,表明琼斯多项式检测因果关系$ x $。我们引入了与Conway多项式相关的某些缠结的新不变,并证明Conway多项式未检测到相关的3组分链路之间两个HOPF链接的连接总和,这表明在描述的情况下,Conway多项式未检测到因果关系。

Let $X$ be a $(2+1)$-dimensional globally hyperbolic spacetime with a Cauchy surface $Σ$ whose universal cover is homeomorphic to $\mathbb{R}^2$. We provide empirical evidence suggesting that the Jones polynomial detects causality in $X$. We introduce a new invariant of certain tangles related to the Conway polynomial, and prove that the Conway polynomial does not detect the connected sum of two Hopf links among relevant 3-component links, which suggests that the Conway polynomial does not detect causality in the scenario described.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源