论文标题

非自适应催化先知的不平等现象

Non-Adaptive Matroid Prophet Inequalities

论文作者

Chawla, Shuchi, Goldner, Kira, Karlin, Anna R., Miller, J. Benjamin

论文摘要

我们研究了非适应性算法,用于矩阵先知不平等。自2012年[KW12]引入阈值以保证对先知的紧密2及阈值以来,已经考虑了Matroid先知的不平等现象。但是,该算法是自适应的。 [CHMS10]和[FSZ16]的其他方法使用了具有可行性限制的非自适应阈值。但是,这意味着当项目无法获得附加的可行性约束时,将项目的阈值更改为无穷大,因此该算法并不是真正的非适应性。先知不平等的主要应用是在拍卖设计中,非自适应价格具有重要优势:它们转换为符合订单的张贴价格,对于将先知不平等转化为多维买家的真实机制至关重要。现有的Matroid先知不平等不足以解决此应用。我们提出了第一个非自适应恒定因素先知的先知不平等,用于图形曲霉。

We investigate non-adaptive algorithms for matroid prophet inequalities. Matroid prophet inequalities have been considered resolved since 2012 when [KW12] introduced thresholds that guarantee a tight 2-approximation to the prophet; however, this algorithm is adaptive. Other approaches of [CHMS10] and [FSZ16] have used non-adaptive thresholds with a feasibility restriction; however, this translates to adaptively changing an item's threshold to infinity when it cannot be taken with respect to the additional feasibility constraint, hence the algorithm is not truly non-adaptive. A major application of prophet inequalities is in auction design, where non-adaptive prices possess a significant advantage: they convert to order-oblivious posted pricings, and are essential for translating a prophet inequality into a truthful mechanism for multi-dimensional buyers. The existing matroid prophet inequalities do not suffice for this application. We present the first non-adaptive constant-factor prophet inequality for graphic matroids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源