论文标题
深入增强学习和超宽带的室内点对点导航
Indoor Point-to-Point Navigation with Deep Reinforcement Learning and Ultra-wideband
论文作者
论文摘要
室内自主导航需要一个精确而准确的本地化系统,能够通过混乱,非结构化和动态的环境来指导机器人。超宽带(UWB)技术作为室内定位系统,提供了精确的本地化和跟踪,但是移动的障碍和非线视线可能会产生嘈杂和不可靠的信号。结合传感器的噪声,未建模的动力学和环境变化可能会导致机器人的引导算法失败。我们展示了通过深入强化学习(RL)与UWB本地化技术相结合的功率和低计算成本点对点本地规划者如何构成强大而有抵抗力的噪声短距离指导系统的完整解决方案。我们在封装机器人动力学和任务约束的模拟环境上训练了RL代理,然后我们在实时设置中测试了学习点对点导航策略,并使用UWB本地化进行了超过两百个实验性评估。我们的结果表明,在普通模拟中学习的计算有效的端到端策略直接将低范围传感器信号映射到机器人控件中,并在真实环境中与超宽带噪声结合部署,可以提供强大的,可扩展的且具有稳定的且可扩展且在Edge Edge的低成本导航系统解决方案。
Indoor autonomous navigation requires a precise and accurate localization system able to guide robots through cluttered, unstructured and dynamic environments. Ultra-wideband (UWB) technology, as an indoor positioning system, offers precise localization and tracking, but moving obstacles and non-line-of-sight occurrences can generate noisy and unreliable signals. That, combined with sensors noise, unmodeled dynamics and environment changes can result in a failure of the guidance algorithm of the robot. We demonstrate how a power-efficient and low computational cost point-to-point local planner, learnt with deep reinforcement learning (RL), combined with UWB localization technology can constitute a robust and resilient to noise short-range guidance system complete solution. We trained the RL agent on a simulated environment that encapsulates the robot dynamics and task constraints and then, we tested the learnt point-to-point navigation policies in a real setting with more than two-hundred experimental evaluations using UWB localization. Our results show that the computational efficient end-to-end policy learnt in plain simulation, that directly maps low-range sensors signals to robot controls, deployed in combination with ultra-wideband noisy localization in a real environment, can provide a robust, scalable and at-the-edge low-cost navigation system solution.