论文标题

刻有格拉曼尼亚集群类别中的不可分解的模块

Rigid Indecomposable Modules in Grassmannian Cluster Categories

论文作者

Baur, Karin, Bogdanic, Dusko, Elsener, Ana Garcia, Li, Jian-Rong

论文摘要

$ \ Mathbb {C}^n $中的Grassmannian品种的坐标环具有群集代数结构,并带有Plücker关系,从而引起了交换关系。在本文中,我们研究了相应的Grassmannian集群类别的不可分解模块$ {\ rm cm}(b_ {k,n})$。 Jensen,King和SU已将Kac-Moody root System $ J_ {K,N} $与$ {\ rm cm}(b_ {k,n})$相关联,并在有限类型中表明,刚性类型,刚性不可兼容的模块对应于根。通常,类别$ {\ rm cm}(b_ {k,n})$与root System $ j_ {k,n} $之间的链接仍然是神秘的,这是一个开放的问题,这是否始终赋予根源。在本文中,我们在无限类型中提供了这种关联的证据:我们表明,每个不可分解的等级2模块都对应于关联的根系的根。我们还表明,$ {\ rm cm}中的不可分配等级3个模块(b_ {3,n})$都产生了$ j_ {3,n} $的根。对于$ {\ rm cm}中的等级3模块(b_ {3,n})$对应于真正的根,我们表明它们的基础配置文件是某个规范的循环排列。我们还以$ {\ rm cm}(b_ {3,n})$对应于假想根的级别3模块。通过证明恰好有225个刚性不可兼容的等级3个模块,其中包括$ {\ rm cm}(b_ {3,9})$,我们在这种情况下确认了Grassmannian群集类别和关联的根系之间的链接。我们推测,与真实根相对应的$ {\ rm cm} $ {\ rm cm} $中的任何刚性不可传输模块的配置文件是canonical croment的循环置换。

The coordinate ring of the Grassmannian variety of $k$-dimensional subspaces in $\mathbb{C}^n$ has a cluster algebra structure with Plücker relations giving rise to exchange relations. In this paper, we study indecomposable modules of the corresponding Grassmannian cluster categories ${\rm CM}(B_{k,n})$. Jensen, King, and Su have associated a Kac-Moody root system $J_{k,n}$ to ${\rm CM}(B_{k,n})$ and shown that in the finite types, rigid indecomposable modules correspond to roots. In general, the link between the category ${\rm CM}(B_{k,n})$ and the root system $J_{k,n}$ remains mysterious and it is an open question whether indecomposables always give roots. In this paper, we provide evidence for this association in the infinite types: we show that every indecomposable rank 2 module corresponds to a root of the associated root system. We also show that indecomposable rank 3 modules in ${\rm CM}(B_{3,n})$ all give rise to roots of $J_{3,n}$. For the rank 3 modules in ${\rm CM}(B_{3,n})$ corresponding to real roots, we show that their underlying profiles are cyclic permutations of a certain canonical one. We also characterize the rank 3 modules in ${\rm CM}(B_{3,n})$ corresponding to imaginary roots. By proving that there are exactly 225 profiles of rigid indecomposable rank 3 modules in ${\rm CM}(B_{3,9})$ we confirm the link between the Grassmannian cluster category and the associated root system in this case. We conjecture that the profile of any rigid indecomposable module in ${\rm CM}(B_{k,n})$ corresponding to a real root is a cyclic permutation of a canonical profile.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源