论文标题
宇宙射线散射的理论在现有的MHD模式上符合数据
The theory of cosmic-ray scattering on pre-existing MHD modes meets data
论文作者
论文摘要
我们介绍了一项关于描述银河宇宙射线散射在$ \ mathrm {gev} - \ mathrm {pev} $ domain中的理论的现象学研究的全面研究。我们从第一原理中计算了一组扩散系数,以考虑到在这些环境中起作用的不同阻尼机制的不同阻尼机制。我们确认,如果考虑到级联反应的各向异性,与Alfvénic湍流相关的散射速率将受到高度抑制。另一方面,我们强调说,磁性模式在宇宙射线的银河系限制中起主要作用,最高为$ \ mathrm {pev} $ energies。我们在{\ tt Dragon}代码的数值框架中实现了扩散系数,并模拟了不同主要和次级宇宙射线物种的平衡光谱。我们表明,对于正在考虑的参数的合理选择,在我们的框架中,在归一化和斜率中都正确地复制了高能(高于$ \ simeq 200 \,\ mathrm {gv} $的刚性和二次通量)。
We present a comprehensive study about the phenomenological implications of the theory describing Galactic cosmic-ray scattering onto magnetosonic and Alfvénic fluctuations in the $\mathrm{GeV} - \mathrm{PeV}$ domain. We compute a set of diffusion coefficients from first principles, for different values of the Alfvénic Mach number and other relevant parameters associated to both the Galactic halo and the extended disk, taking into account the different damping mechanisms of turbulent fluctuations acting in these environments. We confirm that the scattering rate associated to Alfvénic turbulence is highly suppressed if the anisotropy of the cascade is taken into account. On the other hand, we highlight that magnetosonic modes play a dominant role in Galactic confinement of cosmic rays up to $\mathrm{PeV}$ energies. We implement the diffusion coefficients in the numerical framework of the {\tt DRAGON} code, and simulate the equilibrium spectrum of different primary and secondary cosmic-ray species. We show that, for reasonable choices of the parameters under consideration, all primary and secondary fluxes at high energy (above a rigidity of $\simeq 200 \, \mathrm{GV}$) are correctly reproduced within our framework, in both normalization and slope.