论文标题
生长和捕获鹅卵石在原星盘中粒子的脆弱碰撞
Growing and Trapping Pebbles with Fragile Collisions of Particles in Protoplanetary Disks
论文作者
论文摘要
[删节]最近的实验室实验表明,冰冷粉尘颗粒的破坏性碰撞的速度比以前想象的要低得多。当这些新的速度是从尘埃演化模型中的实验室实验中考虑的,很难在原月经磁盘(PPD)中生长到卵石大小的生长。这可能与(子)MM观测值相矛盾,并挑战行星和行星的形成。当整个磁盘中的碎片速度为1ms $^{ - 1} $时,我们研究了尘埃演化模型中所需的条件,以在PPD中生长和捕获卵石。我们区分控制湍流速度,垂直搅拌,径向扩散和气体粘性进化的影响的参数,始终假设颗粒不能比气体更快地(径向或垂直)扩散。要形成卵石并产生有效的粒子捕获,控制粒子湍流速度的参数必须很小($Δ_T\ lyseSim10^{ - 4} $)。在这些情况下,垂直沉降可以限制卵石的形成,这也可以防止粒子捕获。因此,设置晶粒垂直沉降的参数必须为$Δ_z<10^{ - 3} $。我们的结果表明,粒子和气体扩散参数的不同组合会导致大量毫米通量和防尘液半径。当发生卵石的形成并且捕获效率是有效的时,在MM发射时,间隙和环的对比度高于NIR。在效率低下的情况下,在两个波长处也会形成结构,从而在NIR中产生更深和更宽的间隙。我们的结果强调了获得气体和颗粒扩散参数的观察性约束以及短波长和长波长的间隙的特性,以更好地理解PPD的基本特征以及在这些物体中观察到的结构的起源。
[abridged] Recent laboratory experiments indicate that destructive collisions of icy dust particles occur with much lower velocities than previously thought. When these new velocities are considered from laboratory experiments in dust evolution models, a growth to pebble sizes in protoplanetary disks (PPDs) is difficult. This may contradict (sub-)mm observations and challenge the formation of planetesimals and planets. We investigate the conditions that are required in dust evolution models for growing and trapping pebbles in PPDs when the fragmentation speed is 1ms$^{-1}$ in the entire disk. We distinguish the parameters controlling the effects of turbulent velocities, vertical stirring, radial diffusion, and gas viscous evolution, always assuming that particles cannot diffuse faster (radially or vertically) than the gas. To form pebbles and produce effective particle trapping, the parameter that controls the particle turbulent velocities must be small ($δ_t\lesssim10^{-4}$). In these cases, the vertical settling can limit the formation of pebbles, which also prevents particle trapping. Therefore the parameter that sets the vertical settling of the grains must be $δ_z<10^{-3}$. Our results suggest that different combinations of the particle and gas diffusion parameters can lead to a large diversity of millimeter fluxes and dust-disk radii. When pebble formation occurs and trapping is efficient, gaps and rings have higher contrast at mm-emission than in the NIR. In the case of inefficient trapping, structures are also formed at the two wavelengths, producing deeper and wider gaps in the NIR. Our results highlight the importance of obtaining observational constraints of gas and particle diffusion parameters and the properties of gaps at short and long wavelengths to better understand basic features of PPDs and the origin of the structures that are observed in these objects.