论文标题
$(g,μ)$ - 窗口和$(g,μ)$的变形 - 显示
$(G,μ)$-Windows and Deformations of $(G,μ)$-Displays
论文作者
论文摘要
让$ k_0 $为特征$ p $的有限领域,让$ g $是$ \ mathbb {z} _p $的平滑仿射组计划,让$μ$是$ g_ {w(k_0)} $的共同体,以至于$ $ $ - $ - $ - $ - $ - $ - $ - $ - $ \ text lie c $ $ \ { - 1,0,1,2,\ dots \} $。我们证明,伴随nilpotent $(g,μ)$ - 显示的群体类似于$(g,μ)$ - windows的groupoid,这是Windows的概括。
Let $k_0$ be a finite field of characteristic $p$, let $G$ be a smooth affine group scheme over $\mathbb{Z}_p$, and let $μ$ be a cocharacter of $G_{W(k_0)}$ such that the set of $μ$-weights of $\text{Lie}\, G$ is a subset of $\{-1,0,1,2,\dots\}$. We prove that the groupoid of adjoint nilpotent $(G,μ)$-displays is equivalent to the groupoid of $(G,μ)$-windows, which are the generalizations of windows.