论文标题

“ Altmetric提及”是否遵循权力定律?社交媒体的证据在altmetric.com中提及数据

Do 'altmetric mentions' follow Power Laws? Evidence from social media mention data in Altmetric.com

论文作者

Banshal, Sumit Kumar, Basu, Aparna, Singh, Vivek Kumar, Gupta, Solanki, Muhuri, Pranab K.

论文摘要

电力定律是一种普遍存在的特征分布,因为它们几乎在自然和人造系统中都在任何地方发现。它们倾向于在大型,联系和自组织的系统中出现,例如学术出版物。已经发现对科学论文的引用遵循了权力法,即,具有一定程度的引用X的论文数量与X提出的X成正比,从而产生了一些负权。尚未研究Altmetrics的分布特征,因为Altmetrics是与学术出版物有关的最新指标之一。在这里,我们从Altmetrics聚合器AltMetrics.com中选择一个数据示例,其中包含来自2016年期间的Facebook,Twitter,Twitter,News,Blog等的记录以及各种平台上的“个人和复合数据”系列的复合数据序列。使用Power Law分布以及使用最小二乘拟合的拟合分配的“提及”系列。数据的日志图“提及”与论文数量的数量属于大约线性线,这表明幂律分布的合理性。在所有情况下,由于尾巴的波动很大,因此拟合度都不是很好。我们表明,可以通过截断数据系列来消除尾巴中的大波动来改善与权力定律的合适性。我们得出的结论是,Altmetric分布还遵循电力定律,其拟合度相当多。目前可能不需要更严格的确定方法。

Power laws are a characteristic distribution that are ubiquitous, in that they are found almost everywhere, in both natural as well as in man-made systems. They tend to emerge in large, connected and self-organizing systems, for example, scholarly publications. Citations to scientific papers have been found to follow a power law, i.e., the number of papers having a certain level of citation x are proportional to x raised to some negative power. The distributional character of altmetrics has not been studied yet as altmetrics are among the newest indicators related to scholarly publications. Here we select a data sample from the altmetrics aggregator Altmetrics.com containing records from the platforms Facebook, Twitter, News, Blogs, etc., and the composite variable Alt-score for the period 2016. The individual and the composite data series of 'mentions' on the various platforms are fit to a power law distribution, and the parameters and goodness of fit determined using least squares regression. The log-log plot of the data, 'mentions' vs. number of papers, falls on an approximately linear line, suggesting the plausibility of a power law distribution. The fit is not very good in all cases due to large fluctuations in the tail. We show that fit to the power law can be improved by truncating the data series to eliminate large fluctuations in the tail. We conclude that altmetric distributions also follow power laws with a fairly good fit over a wide range of values. More rigorous methods of determination may not be necessary at present.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源