论文标题

域中的域具体化示例:通过强大的计划来解决缺失的域知识

Domain Concretization from Examples: Addressing Missing Domain Knowledge via Robust Planning

论文作者

Sharma, Akshay, Medikeri, Piyush Rajesh, Zhang, Yu

论文摘要

对于现实世界中的机器人计划和决策,不保证完整领域知识的假设。这可能是由于设计缺陷而引起的,或者是由领域的分析或资格引起的。在这种情况下,现有的计划和学习算法可能会产生高度不良的行为。从某种意义上说,与部分知识相比,该问题比部分可观察性更具挑战性,而不是部分可观察到的知识:已知的未知数和未知未知数之间的差异。在这项工作中,我们将其作为域具体化的问题,是域抽象的逆问题。基于设计师和教师从人类用户提供的不完整的域模型,我们的算法搜索在简约模型假设下设置的候选模型。然后,它生成了一个健壮的计划,并在一组候选模型下具有最大成功概率。除了模型空间中的标准搜索公式外,我们还提出了一种基于样本的搜索方法,也提出了它的在线版本,以改善搜索时间。我们在IPC域和模拟机器人域上测试了我们的方法,其中通过从完整模型中删除域特征引入了不完整。结果表明,我们的计划算法会提高计划的成功率,而不会影响成本。

The assumption of complete domain knowledge is not warranted for robot planning and decision-making in the real world. It could be due to design flaws or arise from domain ramifications or qualifications. In such cases, existing planning and learning algorithms could produce highly undesirable behaviors. This problem is more challenging than partial observability in the sense that the agent is unaware of certain knowledge, in contrast to it being partially observable: the difference between known unknowns and unknown unknowns. In this work, we formulate it as the problem of Domain Concretization, an inverse problem to domain abstraction. Based on an incomplete domain model provided by the designer and teacher traces from human users, our algorithm searches for a candidate model set under a minimalistic model assumption. It then generates a robust plan with the maximum probability of success under the set of candidate models. In addition to a standard search formulation in the model-space, we propose a sample-based search method and also an online version of it to improve search time. We tested our approach on IPC domains and a simulated robotics domain where incompleteness was introduced by removing domain features from the complete model. Results show that our planning algorithm increases the plan success rate without impacting the cost much.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源