论文标题

在线内容扩散中的情绪

Emotions in Online Content Diffusion

论文作者

Yu, Yifan, Huang, Shan, Liu, Yuchen, Tan, Yong

论文摘要

社交媒体传递的在线信息与情感表达相关,塑造了我们的思想和行动。在这项研究中,我们结合了社交网络理论,分析并使用计算方法来研究情绪表达,尤其是\ textit {负面离散情绪表达}(即焦虑,悲伤,悲伤,愤怒和厌恶),会导致社交媒体网络中在线内容的不同扩散。我们严格量化扩散级联的结构特性(即大小,深度,最大广度和结构病毒性),并分析涉及级联过程的个体特征(即年龄,性别和网络程度)以及社会关系(即强和弱)。在我们的样本中,超过600万独特的人在大规模的在线社交网络微信中传播了387,486个随机选择的文章。我们使用新生成的域特异性和最新情绪词典来检测这些文章中嵌入的离散情绪的表达。我们将部分线性仪器可变方法与双机器学习框架一起使用,以确定负离散情绪对在线内容扩散的影响。我们发现,具有更多焦虑表达的文章传播到更多的个体,并更深入,广泛,病毒。然而,愤怒和悲伤的表达减少了喀斯喀特的大小和最大宽度。我们进一步表明,具有不同程度的负面情绪表达的文章往往会根据个人特征和社会联系而不同。我们的结果阐明了内容营销和法规,利用负面情绪表达。

Social media-transmitted online information, which is associated with emotional expressions, shapes our thoughts and actions. In this study, we incorporate social network theories and analyses and use a computational approach to investigate how emotional expressions, particularly \textit{negative discrete emotional expressions} (i.e., anxiety, sadness, anger, and disgust), lead to differential diffusion of online content in social media networks. We rigorously quantify diffusion cascades' structural properties (i.e., size, depth, maximum breadth, and structural virality) and analyze the individual characteristics (i.e., age, gender, and network degree) and social ties (i.e., strong and weak) involved in the cascading process. In our sample, more than six million unique individuals transmitted 387,486 randomly selected articles in a massive-scale online social network, WeChat. We detect the expression of discrete emotions embedded in these articles, using a newly generated domain-specific and up-to-date emotion lexicon. We apply a partial-linear instrumental variable approach with a double machine learning framework to causally identify the impact of the negative discrete emotions on online content diffusion. We find that articles with more expressions of anxiety spread to a larger number of individuals and diffuse more deeply, broadly, and virally. Expressions of anger and sadness, however, reduce cascades' size and maximum breadth. We further show that the articles with different degrees of negative emotional expressions tend to spread differently based on individual characteristics and social ties. Our results shed light on content marketing and regulation, utilizing negative emotional expressions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源