论文标题
使用深度学习的结直肠癌的可解释生存预测
Interpretable Survival Prediction for Colorectal Cancer using Deep Learning
论文作者
论文摘要
从基于深度学习的预后组织病理学模型中得出可解释的预后特征仍然是一个挑战。在这项研究中,我们开发了一个深度学习系统(DLS),用于使用3,652例(27,300张幻灯片)预测II期和III期结直肠癌的特定生存率。当在两个验证数据集上进行评估,分别包含1,239例病例(9,340个幻灯片)和738例(7,140个幻灯片),DLS达到了5年疾病特异性AUC 0.70的5年生存AUC,为0.70(95%CI CI 0.66-0.73)和0.66-0.73)和0.69(95%CI 0.64-0.64--0.72),以及一定的预测。 特征。为了解释DLS,我们探讨了不同人解剖特征解释DLS分数方差的能力。我们观察到临床病理特征,例如T类别,N类别和等级,解释了DLS评分方差的一小部分(在这两个验证集中R2 = 18%)。接下来,我们通过从基于深度学习的图像相似性模型的聚类嵌入来生成人体解剖的组织学特征,并表明它们解释了大多数方差(R2的R2为73%至80%)。此外,与高DLS分数最密切相关的聚类衍生的特征在隔离方面也很高。具有明显的视觉外观(与脂肪组织相邻的肿瘤细胞簇不良),由87.0-95.5%精度的注释者鉴定出此特征。我们的方法可用于解释预后深度学习模型的预测,并发现潜在的潜在的预后特征,这些特征可以被人们可靠地确定为未来的验证研究。
Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease specific survival for stage II and III colorectal cancer using 3,652 cases (27,300 slides). When evaluated on two validation datasets containing 1,239 cases (9,340 slides) and 738 cases (7,140 slides) respectively, the DLS achieved a 5-year disease-specific survival AUC of 0.70 (95%CI 0.66-0.73) and 0.69 (95%CI 0.64-0.72), and added significant predictive value to a set of 9 clinicopathologic features. To interpret the DLS, we explored the ability of different human-interpretable features to explain the variance in DLS scores. We observed that clinicopathologic features such as T-category, N-category, and grade explained a small fraction of the variance in DLS scores (R2=18% in both validation sets). Next, we generated human-interpretable histologic features by clustering embeddings from a deep-learning based image-similarity model and showed that they explain the majority of the variance (R2 of 73% to 80%). Furthermore, the clustering-derived feature most strongly associated with high DLS scores was also highly prognostic in isolation. With a distinct visual appearance (poorly differentiated tumor cell clusters adjacent to adipose tissue), this feature was identified by annotators with 87.0-95.5% accuracy. Our approach can be used to explain predictions from a prognostic deep learning model and uncover potentially-novel prognostic features that can be reliably identified by people for future validation studies.