论文标题
射手座a*中非热弹的一般相对论的MHD模拟*
General relativistic MHD simulations of non-thermal flaring in Sagittarius A*
论文作者
论文摘要
Sagittarius A*在其多波长发射中表现出规律性的可变性,包括每日X射线耀斑和大致连续的近红外(NIR)闪烁。这种变异性的起源仍然模棱两可,因为反康普顿和同步加速器发射都是可能的辐射机制。潜在的粒子分布也没有受到很好的约束,尤其是非热贡献。在这项工作中,我们采用了GPU加速的一般相对论磁性水力学(GRMHD)代码H-AMR进行弹力通量分布的研究,包括首次在SGR A*的高分辨率3D模拟中粒子加速度的影响。对于粒子加速度,我们使用一般相对论射线追踪(GRRT)代码BHOSS进行辐射转移,假设杂交热+非热电子能量分布。我们在亚毫米,NIR和X射线波段中提取〜60 h的灯光曲线,并比较灯泡的功率光谱和累积通量分布与SGR A*耀斑的统计描述。我们的结果表明,在弱磁化的吸积流中由湍流驱动的重新连接引起的电子种群导致中度NIR和X射线耀斑,并合理地描述了X射线通量分布,同时实现了多波伦长度限制。这些模型在NIR和X射线中都显示出较高的RMS%振幅,>约150%,其吸积率的变化驱动了230〜GHz通量变异性,与SGR A*观察结果一致。
Sagittarius A* exhibits regular variability in its multiwavelength emission, including daily X-ray flares and roughly continuous near-infrared (NIR) flickering. The origin of this variability is still ambiguous since both inverse Compton and synchrotron emission are possible radiative mechanisms. The underlying particle distributions are also not well constrained, particularly the non-thermal contribution. In this work, we employ the GPU-accelerated general relativistic magnetohydrodynamics (GRMHD) code H-AMR perform a study of flare flux distributions, including the effect of particle acceleration for the first time in high-resolution 3D simulations of Sgr A*. For the particle acceleration, we use the general relativistic ray-tracing (GRRT) code BHOSS to perform the radiative transfer, assuming a hybrid thermal+non-thermal electron energy distribution. We extract ~60 h lightcurves in the sub-millimetre, NIR and X-ray wavebands, and compare the power spectra and the cumulative flux distributions of the lightcurves to statistical descriptions for Sgr A* flares. Our results indicate that non-thermal populations of electrons arising from turbulence-driven reconnection in weakly magnetised accretion flows lead to moderate NIR and X-ray flares and reasonably describe the X-ray flux distribution while fulfilling multiwavelength flux constraints. These models exhibit high rms% amplitudes, >~150% both in the NIR and the X-rays, with changes in the accretion rate driving the 230~GHz flux variability, in agreement with Sgr A* observations.