论文标题
具有广泛同时相关性的灵活双变量Ingarch过程
Flexible Bivariate INGARCH Process With a Broad Range of Contemporaneous Correlation
论文作者
论文摘要
我们提出了一种新型的柔性双变量条件泊松(BCP)整数标准的广义自动回归有条件的异形(INGARCH)模型,用于相关计数时间序列数据。我们提出的BCP-Intarch模型在数学上是可拖延的,并且比现有的双变量Ingarch模型具有主要优势,其捕获同时互相关的广泛范围(负和正面)的能力,这是一个非平凡的进步。开发了BCP-Intarch过程的平稳性和终端性的属性。参数的估计是通过有条件的最大似然(CML)进行的,并通过模拟研究研究了估计量的有限样本行为。 CML估计量的渐近特性是得出的。其他仿真研究比较了获得参数估计的标准误差的方法和对比方法,在该估计中,Bootstrap选项被证明是有利的。提出和评估了时间序列之间存在同期相关性的假设检验方法。我们将我们的方法应用于附近两个巴西城市的肝炎病例计数,这是高度相关的。数据分析证明了考虑双变量模型的重要性,该模型允许在现实生活应用中建立广泛的同时相关性。
We propose a novel flexible bivariate conditional Poisson (BCP) INteger-valued Generalized AutoRegressive Conditional Heteroscedastic (INGARCH) model for correlated count time series data. Our proposed BCP-INGARCH model is mathematically tractable and has as the main advantage over existing bivariate INGARCH models its ability to capture a broad range (both negative and positive) of contemporaneous cross-correlation which is a non-trivial advancement. Properties of stationarity and ergodicity for the BCP-INGARCH process are developed. Estimation of the parameters is performed through conditional maximum likelihood (CML) and finite sample behavior of the estimators are investigated through simulation studies. Asymptotic properties of the CML estimators are derived. Additional simulation studies compare and contrast methods of obtaining standard errors of the parameter estimates, where a bootstrap option is demonstrated to be advantageous. Hypothesis testing methods for the presence of contemporaneous correlation between the time series are presented and evaluated. We apply our methodology to monthly counts of hepatitis cases at two nearby Brazilian cities, which are highly cross-correlated. The data analysis demonstrates the importance of considering a bivariate model allowing for a wide range of contemporaneous correlation in real-life applications.