论文标题
流行病估计的采样设计
Sampling designs for epidemic prevalence estimation
论文作者
论文摘要
如果案例(或阳性)在样本中的表示相对较高,则在直觉上,抽样对于患病率估计的效率可能更有效。如果该病毒是通过个人接触传播的,则将观察到的病例(但不是非案例)的接触跟踪称为\ emph {自适应网络跟踪},比从人群中的随机抽样产生了更高的病例产量。研究了相关设计对横截面和变化估计的功效。这些设计的可用性允许一个团结的追踪,以打击流行病和抽样,以估计单一努力中的患病率。
Intuitively, sampling is likely to be more efficient for prevalence estimation, if the cases (or positives) have a relatively higher representation in the sample than in the population. In case the virus is transmitted via personal contacts, contact tracing of the observed cases (but not noncases), to be referred to as \emph{adaptive network tracing}, can generate a higher yield of cases than random sampling from the population. The efficacy of relevant designs for cross-sectional and change estimation is investigated. The availability of these designs allows one unite tracing for combating the epidemic and sampling for estimating the prevalence in a single endeavour.