论文标题

古典椒盐脆饼结和左订购性

Classical pretzel knots and left orderability

论文作者

Khan, Arafat, Tran, Anh T.

论文摘要

我们考虑经典的椒盐脆饼结$ P(a_1,a_2,a_3)$,其中$ a_1,a_2,a_3 $是正整数。通过使用椭圆形$ \ mathrm {sl} _2(\ mathbb r)$ - 表示的连续路径,我们表明(i)(i)由$ \ frac {m} {l} {l} $ p($ p(a_1,a_2,a_3)$ $ pluckable und $ \ frac \ frac的3个manifold, (ii)$ n^{\ mathrm {th}} $ - $ p(a_1,a_2,a_3)$的环状分支封面,如果$ n>2π/ \ arccos(1-2/(1 + A_1 A_1 A_1 A_1 A_2 + A_2 + A_2 A_2 A_3 + A_3 + A_3 A_3 A__1),则剩下订购基本组。

We consider the classical pretzel knots $P(a_1, a_2, a_3)$, where $a_1, a_2, a_3$ are positive odd integers. By using continuous paths of elliptic $\mathrm{SL}_2(\mathbb R)$-representations, we show that (i) the 3-manifold obtained by $\frac{m}{l}$-surgery on $P(a_1, a_2, a_3)$ has left orderable fundamental group if $\frac{m}{l} < 1$, and (ii) the $n^{\mathrm{th}}$-cyclic branched cover of $P(a_1, a_2, a_3)$ has left orderable fundamental group if $n > 2π/ \arccos(1-2/(1+a_1 a_2 + a_2 a_3 + a_3 a_1))$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源