论文标题

在$ k $ - 中间图中的rainbow统治

On $k$-rainbow domination in middle graphs

论文作者

Kim, Kijung

论文摘要

让$ g $为有限的简单图,带有顶点套装$ v(g)$和edge set $ e(g)$。函数$ f:v(g)\ rightarrow \ nathcal {p}(\ {1,2,2,\ dotsc,k \})$是a \ textit {$ k $ -rainbow统治函数$ g $,如果每个顶点$ v \ in V(g)$ f(g)$ f(v)$ f(v) n(v)} f(u)= \ {1,2,\ dotsc,k \} $。 $ k $ -rainbow主导函数的重量是$ \ sum_ {v \ in v(g)} | f(v)| $。 \ textit {$ k $ -rainbow统治号码} $γ_{rk}(g)$是$ g $上$ k $ -rainbow统治功能的最小重量。在本文中,我们在中间图中启动了$ k $ rainbow统治数字的研究。我们定义了中间$ k $ rainbow主导函数的概念,获得与之相关的一些界限,并确定某些图形类别的中间$ 3 $ rainbow统治数。我们还为中间和下界提供了$ 3 $ 3 $ rainbow统治的树木数量。此外,我们确定了路径和周期中间图的$ 3 $ -RAINBOW DIMATIC号码。

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $γ_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源