论文标题
基于4组分的Dirac-Coulomb(-Gaunt)Hamiltonian的相对论EOM-CCSD用于核心激发和核心离子的状态能量
Relativistic EOM-CCSD for core-excited and core-ionized state energies based on the 4-component Dirac-Coulomb(-Gaunt) Hamiltonian
论文作者
论文摘要
我们报告了针对基于单打和双打理论(CVS-EOM-CCSD)的4种组件相对论哈密顿耦合群集的4种相对论方程式耦合群集的实施,以计算真实性核心离子化电位和核心激发能源。有了能够利用双重对称性的实现,我们研究了不同的CVS-EOM-CCSD变体的影响,以及基于确切的2组分(X2C)框架的不同汉密尔顿人的使用,对卤素内不同核心电离和激发态的能量(halogen)的能量xef $ _2 $)物种。我们的结果表明,X2C分子平均场方法[Sikkema等,J。Chem。物理。 2009,131,124116],基于4-成分的dirac-coulomb均值计算($^2 $ dc $^m $)能够提供核心激发和电离能量,这些核心激发和电离能量几乎与参考4分量能量的最多和包括第五元素在内。我们观察到,在小组分基集中进行的两电子积分产生了不可忽略的贡献,该核心结合能的核心结合能的K和L边缘的原子(例如碘或astatine)以及基于Dirac-Coulomb-Gaunt均值计算的方法($^2 $ DCG $^M $)是X2c的范围更为精确的,该方法是相比的,这是X2c的相互作用。包括通过原子平均场积分。
We report an implementation of the core-valence separation approach to the 4-component relativistic Hamiltonian based equation-of-motion coupled-cluster with singles and doubles theory (CVS-EOM-CCSD), for the calculation of relativistic core-ionization potentials and core-excitation energies. With this implementation, which is capable of exploiting double group symmetry, we investigate the effects of the different CVS-EOM-CCSD variants, and the use of different Hamiltonians based on the exact 2-component (X2C) framework, on the energies of different core ionized and excited states in halogen (CH$_3$I, HX and X$^-$, X = Cl-At) and xenon containing (Xe, XeF$_2$) species. Our results show that the X2C molecular mean-field approach [Sikkema et al., J. Chem. Phys. 2009, 131, 124116], based on 4-component Dirac-Coulomb mean-field calculations ($^2$DC$^M$) is capable of providing core excitations and ionization energies that are nearly indistinguishable from the reference 4-component energies for up to and including fifth-row elements. We observe that two-electron integrals over the small-component basis sets yield non-negligible contributions to core binding energies for the K and L edges for atoms such as iodine or astatine, and that the approach based on Dirac-Coulomb-Gaunt mean-field calculations ($^2$DCG$^M$) are significantly more accurate than X2C calculations for which screened two-electron spin-orbit interactions are included via atomic mean-field integrals.