论文标题

多项式非线性状态空间和非线性模型模型的实验评估

Experimental assessment of polynomial nonlinear state-space and nonlinear-mode models for near-resonant vibrations

论文作者

Scheel, Maren, Kleyman, Gleb, Tatar, Ali, Brake, Matthew R. W., Peter, Simon, Noël, Jean-Philippe, Allen, Matthew S., Krack, Malte

论文摘要

在本文中,使用两种现有的非线性系统识别方法来识别数据驱动的模型。第一种方法的重点是使用稳态激发识别系统。为此,实现了一个锁定的环路控制器,以获取共振附近的周期性振荡并构建非线性模式模型。该模型基于振幅依赖的模态性能,即不需要非线性基函数。第二种方法可以用宽带随机输入来利用不受控制的实验,以使用高级系统识别工具构建多项式非线性状态空间模型。该方法应用于两个实验测试钻机,一个带有膝关节的磁性悬臂梁和一个免费的光束。然后挑战两种方法的各个模型,以预测在不同的正弦和正弦和扫描激发下观察到的动态,近乎共鸣的行为。非线性模式和状态空间模型的振动预测显然突出了模型的功能和局限性。通过设计,非线性模型模型在共振峰值上产生了完美的匹配,并且在附近近距离精度。但是,它仅限于间隔良好的模式和正弦激发。状态空间模型涵盖了更广泛的动态范围,包括瞬态激发。但是,本研究中考虑的现实生活非线性只能通过多项式基础函数近似。因此,发现已确定的状态空间模型是高度输入依赖性的,特别是对于正弦激发,发现它们会导致低预测能力。

In the present paper, two existing nonlinear system identification methodologies are used to identify data-driven models. The first methodology focuses on identifying the system using steady-state excitations. To accomplish this, a phase-locked loop controller is implemented to acquire periodic oscillations near resonance and construct a nonlinear-mode model. This model is based on amplitude-dependent modal properties, i.e. does not require nonlinear basis functions. The second methodology exploits uncontrolled experiments with broadband random inputs to build polynomial nonlinear state-space models using advanced system identification tools. The methods are applied to two experimental test rigs, a magnetic cantilever beam and a free-free beam with a lap joint. The respective models of both methods and both specimens are then challenged to predict dynamic, near-resonant behavior observed under different sine and sine-sweep excitations. The vibration prediction of the nonlinear-mode and state-space models clearly highlight the capabilities and limitations of the models. The nonlinear-mode model, by design, yields a perfect match at resonance peaks and high accuracy in close vicinity. However, it is limited to well-spaced modes and sinusoidal excitation. The state-space model covers a wider dynamic range, including transient excitations. However, the real-life nonlinearities considered in this study can only be approximated by polynomial basis functions. Consequently, the identified state-space models are found to be highly input-dependent, in particular for sinusoidal excitations where they are found to lead to a low predictive capability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源