论文标题

通过变量分离,高级可集成旋转链中相关器的决定符形式

Determinant Form of Correlators in High Rank Integrable Spin Chains via Separation of Variables

论文作者

Gromov, Nikolay, Levkovich-Maslyuk, Fedor, Ryan, Paul

论文摘要

在本文中,我们采取进一步的步骤来开发与GL(N)对称性的可集成旋转链的变量分离程序。通过第一次发现SOV的矩阵元素明确测量我们能够以简单的确定性形式计算相关函数和波浪函数重叠。特别是,我们展示了如何将壳和壳代数伯特国家的重叠作为决定因素。另一个对AD/CFT应用程序特别有用的结果是,两个具有不同曲折的Bethe州之间的重叠,这在我们的方法中也采用了决定性形式。我们的结果还将与A. cavaglia和D. volin合作的先前作品扩展到了自旋的一般值,包括首次在较高级别的非压缩病中的SOV构造。

In this paper we take further steps towards developing the separation of variables program for integrable spin chains with gl(N) symmetry. By finding, for the first time, the matrix elements of the SoV measure explicitly we were able to compute correlation functions and wave function overlaps in a simple determinant form. In particular, we show how an overlap between on-shell and off-shell algebraic Bethe states can be written as a determinant. Another result, particularly useful for AdS/CFT applications, is an overlap between two Bethe states with different twists, which also takes a determinant form in our approach. Our results also extend our previous works in collaboration with A. Cavaglia and D. Volin to general values of the spin, including the SoV construction in the higher-rank non-compact case for the first time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源