论文标题

医学图像细分的高级基于先验的损失功能:调查

High-level Prior-based Loss Functions for Medical Image Segmentation: A Survey

论文作者

Jurdi, Rosana El, Petitjean, Caroline, Honeine, Paul, Cheplygina, Veronika, Abdallah, Fahed

论文摘要

如今,深度卷积神经网络(CNN)已证明了在各种成像方式和任务上进行监督的医学图像分割的最先进的表现。尽管取得了早期成功,但分割网络仍可能会产生解剖上异常的分割,孔或不准确的对象边界附近。为了减轻这种影响,最近的研究工作重点是纳入空间信息或先验知识以实施解剖学上合理的细分。如果图像分割中的先验知识在经典优化方法中不是一个新主题,那么如今,基于CNN的图像细分的趋势越来越多,如越来越多的关于该主题的文献所示。在这项调查中,我们专注于高级先验,并嵌入损失函数水平。我们根据先前的性质对文章进行分类:对象形状,大小,拓扑和区域间约束。我们重点介绍当前方法的优势和局限性,讨论与设计和基于先前的损失以及优化策略相关的挑战,并提出未来的研究方向。

Today, deep convolutional neural networks (CNNs) have demonstrated state of the art performance for supervised medical image segmentation, across various imaging modalities and tasks. Despite early success, segmentation networks may still generate anatomically aberrant segmentations, with holes or inaccuracies near the object boundaries. To mitigate this effect, recent research works have focused on incorporating spatial information or prior knowledge to enforce anatomically plausible segmentation. If the integration of prior knowledge in image segmentation is not a new topic in classical optimization approaches, it is today an increasing trend in CNN based image segmentation, as shown by the growing literature on the topic. In this survey, we focus on high level prior, embedded at the loss function level. We categorize the articles according to the nature of the prior: the object shape, size, topology, and the inter-regions constraints. We highlight strengths and limitations of current approaches, discuss the challenge related to the design and the integration of prior-based losses, and the optimization strategies, and draw future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源