论文标题

分层互补学习,用于弱监督物体本地化

Hierarchical Complementary Learning for Weakly Supervised Object Localization

论文作者

Benassou, Sabrina Narimene, Shi, Wuzhen, Jiang, Feng, Benzine, Abdallah

论文摘要

弱监督的对象定位(WSOL)是一个具有挑战性的问题,旨在仅使用图像级标签来定位对象。由于缺乏地面真相界框,主要使用类标签来训练模型。该模型生成了一个类激活图(CAM),该映射(CAM)激活最歧视的特征。但是,CAM的主要缺点是能够仅检测对象的一部分。为了解决这个问题,一些研究人员已从检测到的对象\ cite {b1,b2,b4}或图像\ cite {b3}中删除了零件。从图像或物体的检测部分中删除零件的目的是迫使模型检测其他功能。但是,这些方法需要一个或多个超参数来消除图像上适当的像素,这可能涉及信息丢失。相比之下,本文提出了一种层次互补学习网络方法(HCLNET),该方法可帮助CNN进行更好的分类和对象在图像上的定位。 HCLNET使用互补地图迫使网络检测对象的其他部分。与以前的作品不同,此方法不需要任何额外的超参数来生成不同的凸轮,也不需要引入大量信息丢失。为了融合这些不同的地图,已经使用了两种称为加法策略和L1-norm策略的不同融合策略。这些策略允许在排除背景的同时检测整个对象。广泛的实验表明,HCLNET的性能比最先进的方法更好。

Weakly supervised object localization (WSOL) is a challenging problem which aims to localize objects with only image-level labels. Due to the lack of ground truth bounding boxes, class labels are mainly employed to train the model. This model generates a class activation map (CAM) which activates the most discriminate features. However, the main drawback of CAM is the ability to detect just a part of the object. To solve this problem, some researchers have removed parts from the detected object \cite{b1, b2, b4}, or the image \cite{b3}. The aim of removing parts from image or detected parts of the object is to force the model to detect the other features. However, these methods require one or many hyper-parameters to erase the appropriate pixels on the image, which could involve a loss of information. In contrast, this paper proposes a Hierarchical Complementary Learning Network method (HCLNet) that helps the CNN to perform better classification and localization of objects on the images. HCLNet uses a complementary map to force the network to detect the other parts of the object. Unlike previous works, this method does not need any extras hyper-parameters to generate different CAMs, as well as does not introduce a big loss of information. In order to fuse these different maps, two different fusion strategies known as the addition strategy and the l1-norm strategy have been used. These strategies allowed to detect the whole object while excluding the background. Extensive experiments show that HCLNet obtains better performance than state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源