论文标题

深层:在乳腺癌风险评估中独立验证良好量化乳房密度的人工智能方法

Deep-LIBRA: Artificial intelligence method for robust quantification of breast density with independent validation in breast cancer risk assessment

论文作者

Maghsoudi, Omid Haji, Gastounioti, Aimilia, Scott, Christopher, Pantalone, Lauren, Wu, Fang-Fang, Cohen, Eric A., Winham, Stacey, Conant, Emily F., Vachon, Celine, Kontos, Despina

论文摘要

乳房密度是乳腺癌的重要危险因素,它也影响诊断乳房X线摄影的特异性和灵敏度。当前的联邦立法要求所有接受乳房筛查的妇女报告乳房密度。在临床上,使用美国放射学学院乳房成像报告和数据系统(BI-RADS)量表对乳房密度进行视觉评估。在这里,我们引入了一种人工智能(AI)方法,以估计数字乳房X线照片的乳房百分比密度(PD)。我们的方法使用两个卷积神经网络体系结构利用深度学习(DL)来准确分割乳房区域。然后将一种结合超像素生成,纹理特征分析和支持向量机的机器学习算法应用于估计PD的非密集组织区域的密集。我们的方法已在15,661张图像(4,437名女性)的多种族多机构数据集上进行了培训和验证,然后在6,368个数字乳房X线照片(1,702名女性;案例= 414)的独立数据集上进行了测试,以供PD估计和乳腺癌的歧视。在独立的数据集上,深-libra和专家读取器的PD估计密切相关(Spearman相关系数= 0.90)。此外,与其他四种广泛使用的研究和商业性PD评估方法相比,深层libra产生了更高的乳腺癌识别性能(ROC曲线下的面积,AUC = 0.611 [95%置信区间(CI):0.583,0.639])与其他四种广泛使用的研究和商业PD评估方法相比(AUC = 0.528至0.588)。我们的结果表明,专家读者对深纤维和金标准评估之间的PD估计有很强的一致性,以及对最先进的开源和商业方法的乳腺癌风险评估的改善。

Breast density is an important risk factor for breast cancer that also affects the specificity and sensitivity of screening mammography. Current federal legislation mandates reporting of breast density for all women undergoing breast screening. Clinically, breast density is assessed visually using the American College of Radiology Breast Imaging Reporting And Data System (BI-RADS) scale. Here, we introduce an artificial intelligence (AI) method to estimate breast percentage density (PD) from digital mammograms. Our method leverages deep learning (DL) using two convolutional neural network architectures to accurately segment the breast area. A machine-learning algorithm combining superpixel generation, texture feature analysis, and support vector machine is then applied to differentiate dense from non-dense tissue regions, from which PD is estimated. Our method has been trained and validated on a multi-ethnic, multi-institutional dataset of 15,661 images (4,437 women), and then tested on an independent dataset of 6,368 digital mammograms (1,702 women; cases=414) for both PD estimation and discrimination of breast cancer. On the independent dataset, PD estimates from Deep-LIBRA and an expert reader were strongly correlated (Spearman correlation coefficient = 0.90). Moreover, Deep-LIBRA yielded a higher breast cancer discrimination performance (area under the ROC curve, AUC = 0.611 [95% confidence interval (CI): 0.583, 0.639]) compared to four other widely-used research and commercial PD assessment methods (AUCs = 0.528 to 0.588). Our results suggest a strong agreement of PD estimates between Deep-LIBRA and gold-standard assessment by an expert reader, as well as improved performance in breast cancer risk assessment over state-of-the-art open-source and commercial methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源