论文标题

通过Koopman操作员对螺旋致动的惯性软机器人臂的建模,还原和控制

Modeling, Reduction, and Control of a Helically Actuated Inertial Soft Robotic Arm via the Koopman Operator

论文作者

Haggerty, David A., Banks, Michael J., Curtis, Patrick C., Mezić, Igor, Hawkes, Elliot W.

论文摘要

当部署在复杂,精致和动态的环境中时,软机器人有望提高对刚性机器人的安全性和能力。但是,这些系统的无限自由度和高度非线性动力学严重使其建模和控制变得复杂。为了应对这一开放挑战的一步,我们将数据驱动的Hankel动态模式分解(HDMD)应用于时间延迟可观察到的模型识别,即高度惯性,螺旋软机器人臂的模型识别,其自由度不足。所得模型是线性的,因此可以通过线性二次调节器(LQR)进行控制。使用我们的测试床设备,一种动态的,轻巧的气动织物臂,尖端有惯性质量,我们表明HDMD和LQR的组合使我们能够仅使用开放环控制器来实现我们的机器人以实现任意姿势。我们进一步表明,Koopman光谱分析为我们提供了模式的尺寸缩小基础,该基础降低了计算复杂性而无需牺牲预测能力。

Soft robots promise improved safety and capability over rigid robots when deployed in complex, delicate, and dynamic environments. However, the infinite degrees of freedom and highly nonlinear dynamics of these systems severely complicate their modeling and control. As a step toward addressing this open challenge, we apply the data-driven, Hankel Dynamic Mode Decomposition (HDMD) with time delay observables to the model identification of a highly inertial, helical soft robotic arm with a high number of underactuated degrees of freedom. The resulting model is linear and hence amenable to control via a Linear Quadratic Regulator (LQR). Using our test bed device, a dynamic, lightweight pneumatic fabric arm with an inertial mass at the tip, we show that the combination of HDMD and LQR allows us to command our robot to achieve arbitrary poses using only open loop control. We further show that Koopman spectral analysis gives us a dimensionally reduced basis of modes which decreases computational complexity without sacrificing predictive power.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源