论文标题
RZ CAS的光谱长期监测 - 第一部分:基本恒星和系统参数
Spectroscopic long-term monitoring of RZ Cas -- Part I: Basic stellar and system parameters
论文作者
论文摘要
RZ CAS是一个短周期的Algol-type系统,显示其质量收益主要成分的传质发作和Delta SCT样振荡。我们分析了我们在2001年至2017年持续的光谱长期监测中获得的RZ CAS的高分辨率光谱。光谱分析导致了这两个组件的精确大气参数,特别是在太阳值以下的表面丰度中。我们发现,轨道周期的变化是半规则的,并且为不同的观察时期提供了不同的特征时间尺度。我们表明,在包括二级分量表面的两个很酷的斑点时,可以对具有轨道相的径向速度变化进行建模。建模会导致精确的质量和组件的分离。几个参数的季节性变化,例如VSIN(I),旋转 - 轨道同步因子,凉爽伴侣的斑点的强度以及轨道周期的强度,可以以九年的常见时间表为特征。我们将九年的时间尺度解释为凉爽伴侣的磁活动周期。特别是在凉爽伴侣上的黑点的行为使我们解释了这个时间表是基于18年的磁力循环。我们得出的结论是,质量转移速率受Lagrangian Point L1周围磁场的威尔逊凹陷深度的可变深度控制。在结果中,根据可用数据,我们观察到了恒星的阻尼活动周期,从2001年左右的高质量转移开始,随后是2006年和2009年的安静时期,在2013年和2014年左右的活动略高,随后在2015年和2016年的安静时期。但是,由于2010年和2011年的数据缺少数据,我们不能在第二次高质量中播出,这是在第二次高质量上的播放。
RZ Cas is a short-period Algol-type system showing episodes of mass transfer and Delta Sct-like oscillations of its mass-gaining primary component. We analyse high-resolution spectra of RZ Cas that we obtained during a spectroscopic long-term monitoring lasting from 2001 to 2017. Spectrum analysis resulted in precise atmospheric parameters of both components, in particular in surface abundances below solar values. We find that the variation of orbital period is semi-regular and derive different characteristic timescales for different epochs of observation. We show that the radial velocity variations with orbital phase can be modelled when including two cool spots on the surface of the secondary component. The modelling leads to precise masses and separation of the components. The seasonal variation of several parameters, such as vsin(i), rotation-orbit synchronisation factor, strength of the spots on the cool companion, and orbital period, can be characterised by a common timescale of the order of nine years. We interpret the timescale of nine years as the magnetic activity cycle of the cool companion. In particular the behaviour of the dark spots on the cool companion leads us to the interpretation that this timescale is based on an 18-year magnetic dynamo cycle. We conclude that the mass-transfer rate is controlled by the variable depth of the Wilson depression in the magnetic spot around the Lagrangian point L1. In the result, based on available data, we observe a damped activity cycle of the star, starting with a high mass-transfer episode around 2001, followed by quiet periods in 2006 and 2009, slightly higher activity around 2013 and 2014, and again followed by quiet periods in 2015 and 2016. However, owing to missing data for years 2010 and 2011, we cannot exclude that a second high mass-transfer episode occurred within this time span.