论文标题

在Unital Jordan-Banach代数

Surjective isometries between sets of invertible elements in unital Jordan-Banach algebras

论文作者

Peralta, Antonio M.

论文摘要

令$ m $和$ n $为Unital Jordan-Banach代数,让$ m^{ - 1} $和$ n^{ - 1} $分别表示$ m $和$ n $的可逆元素集。假设$ \ mathfrak {m} \ subseteq m^{ - 1} $和$ \ mathfrak {n} \ subseteq n^{ - 1} $是$ m^{ - 1} $和$ n^{ - 1} $的clopen子集,分别为$ n of powers和a)$ {$ {$ n of。在本文中,我们证明,对于每个过滤式等轴测$δ:\ Mathfrak {m} \ to \ mathfrak {n} $,存在一个过滤的实时等距$ t_0:m \ t_0:m \ to n $和元素$ u_0 $ u_0 $在$ n $ $ n $ $Δ(a)中$Δ(a)= a)= a)= t t t_0(a) \ Mathfrak {M} $。\ Smallskip 假设$ m $和$ n $是Unital jb $^*$ - 代数,我们确定每个过滤等轴测$δ:\ mathfrak {m} {m} \ to \ mathfrak {n} $ element $δ(\ \ textbf {1}) $^*$ - $ j $ $ j $从$ m $ to $ u^*$ - homotope $ n_ {u^*} $,以便$$δ(a)= j(p \ circe a) + j((((\ textbf {1} -p)-p)-p)\ circe a^*),$ a \ in $ a \ in \ in \ in \ nath \ nath \ nath \ nath \ nath \ mathfrak} $} $}。在其他假设的情况下,满足$ u_ {ω_0}}(δ(\ textbf {1}))的$ n $中有一个单一元素$ω_0$ $δ(a)= u_ {w_0^{*}} \ left(φ(p \ circ a) +φ(((((\ textbf {1} -p)-p)\ circ a^*)\ right),$ right),所有$ a \ in \ mathfrak {m} $。

Let $M$ and $N$ be unital Jordan-Banach algebras, and let $M^{-1}$ and $N^{-1}$ denote the sets of invertible elements in $M$ and $N$, respectively. Suppose that $\mathfrak{M}\subseteq M^{-1}$ and $\mathfrak{N}\subseteq N^{-1}$ are clopen subsets of $M^{-1}$ and $N^{-1}$, respectively, which are closed for powers, inverses and products of the form $U_{a} (b)$. In this paper we prove that for each surjective isometry $Δ: \mathfrak{M}\to \mathfrak{N}$ there exists a surjective real-linear isometry $T_0: M\to N$ and an element $u_0$ in the McCrimmon radical of $N$ such that $Δ(a) = T_0(a) +u_0$ for all $a\in \mathfrak{M}$.\smallskip Assuming that $M$ and $N$ are unital JB$^*$-algebras we establish that for each surjective isometry $Δ: \mathfrak{M}\to \mathfrak{N}$ the element $Δ(\textbf{1}) =u$ is a unitary element in $N$ and there exist a central projection $p\in M$ and a complex-linear Jordan $^*$-isomorphism $J$ from $M$ onto the $u^*$-homotope $N_{u^*}$ such that $$Δ(a) = J(p\circ a) + J ((\textbf{1}-p) \circ a^*),$$ for all $a\in \mathfrak{M}$. Under the additional hypothesis that there is a unitary element $ω_0$ in $N$ satisfying $U_{ω_0} (Δ(\textbf{1})) = \textbf{1}$, we show the existence of a central projection $p\in M$ and a complex-linear Jordan $^*$-isomorphism $Φ$ from $M$ onto $N$ such that $$Δ(a) = U_{w_0^{*}} \left(Φ(p\circ a) + Φ((\textbf{1}-p) \circ a^*)\right),$$ for all $a\in \mathfrak{M}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源