论文标题
空间社交网络(SSN)热点检测:非平面网络的扫描方法
Spatial Social Network (SSN) Hot Spot Detection: Scan Methods for Non-Planar Networks
论文作者
论文摘要
移动窗口和热点检测分析是用于分析给定区域内点模式的统计方法。此类方法已被用于成功检测到点事件的簇,例如盗窃汽车盗窃或癌症的发生率。但是,这些方法并不能说明各个事件之间的联系,例如社区内的社交关系。本文介绍了两种GIS方法,即Edgescan和NDSCAN,用于捕获具有较高和低水平的当地社交联系的地区。两种方法都是移动窗口过程,分别计算给定焦点区域(窗口区域)中边缘和网络密度的数量。焦点窗口将结果Edgescan和NDSCAN统计信息附加到焦点窗口区域中心的节点。 我们对纽约市黑手党成员之间的1960年代联系的案例研究实施了这些方法。我们使用焦点社区的各种定义,包括欧几里得,曼哈顿和K最近的邻居(KNN)定义。我们发现KNN倾向于夸大局部网络的值,并且在研究区域的外围节点的结局值有更多的变化。我们发现,在位置,Edgescan和NDSCAN热点与研究区域的传统空间热点不同。这些方法可以扩展到未来检测局部三合会和图案的研究,这些研究可以更详细地捕获本地网络结构。
Moving window and hot spot detection analyses are statistical methods used to analyze point patterns within a given area. Such methods have been used to successfully detect clusters of point events such as car thefts or incidences of cancer. Yet, these methods do not account for the connections between individual events, such as social ties within a neighborhood. This paper presents two GIS methods, EdgeScan and NDScan, for capturing areas with high and low levels of local social connections. Both methods are moving window processes that count the number of edges and network density, respectively, in a given focal area (window area). The focal window attaches resultant EdgeScan and NDScan statistics to nodes at the center of the focal window area. We implement these methods on a case study of 1960s connections between members of the Mafia in New York City. We use various definitions of a focal neighborhood including Euclidean, Manhattan and K Nearest Neighbor (KNN) definitions. We find that KNN tends to overstate the values of local networks, and that there is more variation in outcome values for nodes on the periphery of the study area. We find that, location-wise, EdgeScan and NDScan hot spots differ from traditional spatial hot spots in the study area. These methods can be extended to future studies that detect local triads and motifs, which can capture the local network structure in more detail.