论文标题
实时息肉检测,结肠镜检查中的定位和分割,使用深度学习
Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning
论文作者
论文摘要
计算机辅助检测,定位和分割方法可以帮助改善结肠镜检查程序。即使已经构建了许多方法来应对息肉的自动检测和分割,但最先进方法的基准测试仍然是一个空旷的问题。这是由于可应用于息肉数据集的研究计算机视觉方法的数量越来越多。新方法的基准测试可以为自动息肉检测和分割任务的发展提供方向。此外,它可以确保社区中产生的结果是可重现的,并提供了开发方法的公平比较。在本文中,我们使用Kvasir-Seg(用于息肉检测,定位和分割评估方法的准确性和速度的开放式)数据集进行了一些最新的最新方法,该方法是kvasir-seg。尽管大多数文献中的大多数方法都具有竞争性的性能,但我们表明,所提出的Colonsegnet在平均精度为0.8000和平均值为0.8100的平均精度和检测任务的平均速度为0.8100和平均速度为180帧的速度最快。同样,拟议的Colonsegnet的竞争骰子系数为0.8206,而分割任务的最佳平均速度为每秒182.38帧。我们与各种最先进方法的全面比较揭示了基准对自动实时息肉识别的深度学习方法的重要性,这些方法可以潜在地改变当前的临床实践并最大程度地减少错过检测率。
Computer-aided detection, localisation, and segmentation methods can help improve colonoscopy procedures. Even though many methods have been built to tackle automatic detection and segmentation of polyps, benchmarking of state-of-the-art methods still remains an open problem. This is due to the increasing number of researched computer vision methods that can be applied to polyp datasets. Benchmarking of novel methods can provide a direction to the development of automated polyp detection and segmentation tasks. Furthermore, it ensures that the produced results in the community are reproducible and provide a fair comparison of developed methods. In this paper, we benchmark several recent state-of-the-art methods using Kvasir-SEG, an open-access dataset of colonoscopy images for polyp detection, localisation, and segmentation evaluating both method accuracy and speed. Whilst, most methods in literature have competitive performance over accuracy, we show that the proposed ColonSegNet achieved a better trade-off between an average precision of 0.8000 and mean IoU of 0.8100, and the fastest speed of 180 frames per second for the detection and localisation task. Likewise, the proposed ColonSegNet achieved a competitive dice coefficient of 0.8206 and the best average speed of 182.38 frames per second for the segmentation task. Our comprehensive comparison with various state-of-the-art methods reveals the importance of benchmarking the deep learning methods for automated real-time polyp identification and delineations that can potentially transform current clinical practices and minimise miss-detection rates.