论文标题
量子复杂性的几何形状
Geometry of quantum complexity
论文作者
论文摘要
计算复杂性是一种新的量子信息概念,它可能在全息图和理解黑洞内部物理学方面起重要作用。我们考虑使用Nielsen的几何方法来考虑$ N $ QUBITS的量子计算复杂性。我们研究了一种惩罚的选择,与以前的定义相比,该罚款与给定操作同时纠缠的量子数的数量更加渐进。事实证明,这种选择没有奇异性。我们还分析了操作员与国家复杂性之间的关系,并用Riemannian淹没的语言将讨论构建。这提供了单位和状态空间中的大地测量和曲线之间的直接关系,我们还利用了这一关系,以对运算符的状态给予指标的封闭形式表达式。最后,我们研究了统一空间中大量Qubit的共轭点,并提供了强烈的迹象,表明最大的复杂性与惩罚空间的一定状态中的量子数呈指数尺度。
Computational complexity is a new quantum information concept that may play an important role in holography and in understanding the physics of the black hole interior. We consider quantum computational complexity for $n$ qubits using Nielsen's geometrical approach. We investigate a choice of penalties which, compared to previous definitions, increases in a more progressive way with the number of qubits simultaneously entangled by a given operation. This choice turns out to be free from singularities. We also analyze the relation between operator and state complexities, framing the discussion with the language of Riemannian submersions. This provides a direct relation between geodesics and curvatures in the unitaries and the states spaces, which we also exploit to give a closed-form expression for the metric on the states in terms of the one for the operators. Finally, we study conjugate points for a large number of qubits in the unitary space and we provide a strong indication that maximal complexity scales exponentially with the number of qubits in a certain regime of the penalties space.