论文标题
联网多病毒与共享资源传播:分析和缓解策略
Networked Multi-Virus Spread with a Shared Resource: Analysis and Mitigation Strategies
论文作者
论文摘要
本文在存在共享资源的情况下研究了多竞争性连续性流行过程。我们考虑了多种病毒在人群中同时普遍存在的环境,并且扩散不仅是由于个人到个体的相互作用,而且是由于个人到资源相互作用而导致的。在这种情况下,一个人不受任何病毒的影响,或者被一种多种病毒感染。我们将平衡分为三个类别:a)健康状态(所有病毒均已消除),b)单病毒流行平衡(除一种病毒以外的所有病毒都被根除),c)共存平衡(多种病毒同时感染了人群的单独分数)。我们提供了I)足够的条件,可用于指数(分别渐近)消除病毒; ii)单病毒流行平衡的存在,独特性和渐近稳定性的足够条件; iii)健康状态是独特的平衡的必要条件; iv)对于双病毒设置(即两个竞争病毒),是足够的条件和存在共存平衡的必要条件。在这些分析结果的基础上,我们提供了两种缓解策略:一种保证融合健康状态的技术;并且,在双病毒设置中,采用一种病毒来确保消除另一种病毒的方案。在斯德哥尔摩城的一项传播情况的数值研究中,结果说明了结果。
The paper studies multi-competitive continuous-time epidemic processes in the presence of a shared resource. We consider the setting where multiple viruses are simultaneously prevalent in the population, and the spread occurs due to not only individual-to-individual interaction but also due to individual-to-resource interaction. In such a setting, an individual is either not affected by any of the viruses, or infected by one and exactly one of the multiple viruses. We classify the equilibria into three classes: a) the healthy state (all viruses are eradicated), b) single-virus endemic equilibria (all but one viruses are eradicated), and c) coexisting equilibria (multiple viruses simultaneously infect separate fractions of the population). We provide i) a sufficient condition for exponential (resp. asymptotic) eradication of a virus; ii) a sufficient condition for the existence, uniqueness and asymptotic stability of a single-virus endemic equilibrium; iii) a necessary and sufficient condition for the healthy state to be the unique equilibrium; and iv) for the bi-virus setting (i.e., two competing viruses), a sufficient condition and a necessary condition for the existence of a coexisting equilibrium. Building on these analytical results, we provide two mitigation strategies: a technique that guarantees convergence to the healthy state; and, in a bi-virus setup, a scheme that employs one virus to ensure that the other virus is eradicated. The results are illustrated in a numerical study of a spread scenario in Stockholm city.