论文标题

连续时间量子行走在类似群的Cayley图上

Continuous-time Quantum Walks on Cayley Graphs of Extraspecial Groups

论文作者

Sin, Peter, Sorci, Julien

论文摘要

我们在某些非亚伯群的正常cayley图上研究了连续的量子步行,称为外部群体。通过应用关联方案中图的一般结果,我们确定了完美状态转移和分数复兴的精确条件,并使用部分差异来构建类外外的$ 2 $ - 群体,以承认这些各种现象。最后,我们使用Ada Chan的结果表明,没有正常的cayley图,即接受瞬时均匀混合的囊外组。

We study continuous-time quantum walks on normal Cayley graphs of certain non-abelian groups, called extraspecial groups. By applying general results for graphs in association schemes we determine the precise conditions for perfect state transfer and fractional revival, and use partial spreads to construct graphs on extraspecial $2$-groups admitting these various phenomena. Lastly, we use a result of Ada Chan to show that there is no normal Cayley graph of an extraspecial group that admits instantaneous uniform mixing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源