论文标题
通过嵌入预测一致性,域适应性凝视估计
Domain Adaptation Gaze Estimation by Embedding with Prediction Consistency
论文作者
论文摘要
凝视是人类注意力的基本表现。近年来,一系列工作在凝视估计中取得了很高的准确性。但是,人际关系差异限制了独立的目光估计误差的减少。本文提出了一种无监督的方法,用于消除人际关系跨多样性的影响。在域的适应性中,我们设计了具有预测一致性的嵌入式表示形式,以确保不同域中的凝视方向之间的线性关系在凝视空间和嵌入空间上保持一致。具体而言,我们采用源凝视来在每个目标域预测的凝视空间中形成局部线性表示。然后在嵌入空间中应用相同的线性组合,以生成目标域样本的假设嵌入,以保持预测一致性。通过近似目标域样本的预测和假设嵌入,目标和源域之间的偏差会减少。在提出的策略的指导下,我们设计了域的适应性凝视估计网络(DAGEN),该网络以预测一致性学习嵌入,并在Mpiigaze和Eyediap数据集中获得最新的结果。
Gaze is the essential manifestation of human attention. In recent years, a series of work has achieved high accuracy in gaze estimation. However, the inter-personal difference limits the reduction of the subject-independent gaze estimation error. This paper proposes an unsupervised method for domain adaptation gaze estimation to eliminate the impact of inter-personal diversity. In domain adaption, we design an embedding representation with prediction consistency to ensure that the linear relationship between gaze directions in different domains remains consistent on gaze space and embedding space. Specifically, we employ source gaze to form a locally linear representation in the gaze space for each target domain prediction. Then the same linear combinations are applied in the embedding space to generate hypothesis embedding for the target domain sample, remaining prediction consistency. The deviation between the target and source domain is reduced by approximating the predicted and hypothesis embedding for the target domain sample. Guided by the proposed strategy, we design Domain Adaptation Gaze Estimation Network(DAGEN), which learns embedding with prediction consistency and achieves state-of-the-art results on both the MPIIGaze and the EYEDIAP datasets.