论文标题

在$ \ mathbb {z} [\ sqrt {2}] $中,建模随机步行到无限的素数。

Modeling Random Walks to Infinity on Primes in $\mathbb{Z}[\sqrt{2}]$

论文作者

Li, Bencheng, Miller, Steven J., Popescu, Tudor, Sarnecki, Daniel, Wattanawanichkul, Nawapan

论文摘要

一个有趣的问题,称为高斯护城河问题,询问是否有可能步行到无限长度的高斯素数上。我们的工作研究了真正的二次整数环$ \ mathbb {z} [\ sqrt {2}] $的类似情况,其在渐近线附近的素数集群$ y = \ y = \ pm x/\ sqrt {2} $,与高斯素质相比,在哪个群集中,始于来源。我们在$ \ mathbb {z} [\ sqrt {2}] $中构建概率模型,通过应用质量编号定理和一个组合定理来计算其规范最多是$ r^2 $的晶格值的数量。然后,我们证明,如果步行保持在距离渐近线的一定距离之内,就不可能步行到无限。最后,我们执行一些护城河计算,以表明最长的步行可能会保持在渐近线附近。因此,我们猜测,在$ \ mathbb {z} [\ sqrt {2}] $限制长度的步骤上,没有步行到无穷大。

An interesting question, known as the Gaussian moat problem, asks whether it is possible to walk to infinity on Gaussian primes with steps of bounded length. Our work examines a similar situation in the real quadratic integer ring $\mathbb{Z}[\sqrt{2}]$ whose primes cluster near the asymptotes $y = \pm x/\sqrt{2}$ as compared to Gaussian primes, which cluster near the origin. We construct a probabilistic model of primes in $\mathbb{Z}[\sqrt{2}]$ by applying the prime number theorem and a combinatorial theorem for counting the number of lattice points whose absolute values of their norms are at most $r^2$. We then prove that it is impossible to walk to infinity if the walk remains within some bounded distance from the asymptotes. Lastly, we perform a few moat calculations to show that the longest walk is likely to stay close to the asymptotes; hence, we conjecture that there is no walk to infinity on $\mathbb{Z}[\sqrt{2}]$ primes with steps of bounded length.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源