论文标题
膜蛋白中的宽面性 - 布朗尼跨界:一种广义的基于Langevin方程的方法
Subdiffusive-Brownian crossover in membrane proteins: a Generalized Langevin Equation-based approach
论文作者
论文摘要
在本文中,我们提出了一个基于广义的Langevin方程(GLE)模型,以描述蛋白质在脂质双层中的横向扩散。内存内核用粘性(瞬时)和弹性(非瞬时)组件表示,分别通过DIRAC DELTA函数和三参数Mittag-Leffler型函数进行建模。通过在三参数的参数之间施加特定的关系,可以检索到不同的动力学状态,即弹道,副义和布朗尼人,以及从一个制度到另一个制度的交叉。在这种方法中,给出了从弹道制度到延伸政权的过渡时间,以及从次级延伸到布朗政权过渡的放松时间的分布。通过比较该模型框架中得出的平均平方位移(MSD)以及通过分子动力学(MD)模拟计算的膜扩散的MSD来测试模型的可靠性。
In this paper, we propose a Generalized Langevin Equation (GLE)-based model to describe the lateral diffusion of a protein in a lipid bilayer. The memory kernel is represented in terms of a viscous (instantaneous) and an elastic (non instantaneous) component modeled respectively through a Dirac delta function and a three-parameter Mittag-Leffler type function. By imposing a specific relationship between the parameters of the three-parameters Mittag-Leffler function, the different dynamical regimes, namely ballistic, subdiffusive and Brownian, as well as the crossover from one regime to another, are retrieved. Within this approach, the transition time from the ballistic to the subdiffusive regime and the distribution of relaxation times underlying the transition from the subdiffusive to the Brownian regime are given. The reliability of the model is tested by comparing the Mean Squared Displacement (MSD) derived in the framework of this model and the MSD of a protein diffusing in a membrane calculated through molecular dynamics (MD) simulations.