论文标题

超级保存功能和超级空间的弱相似性

Ultrametric preserving functions and weak similarities of ultrametric spaces

论文作者

Bilet, Viktoriia, Dovgoshey, Oleksiy, Shanin, Ruslan

论文摘要

令$ ws(x,d)$为一类超量学空间,与超级空间$(x,d)$相似。本文的主要结果完全描述了超级空间$(x,d)$,其平等$ρ(x,y)= f(d(φ(x),φ(y))$$在ws(y,ρ)\ in WS(x,x,d)$中都保留,每个弱相似$ y y y y $ y $ \ y $ (Pseudoultrametric)保存功能$ f $,具体取决于$φ$。

Let $WS(X, d)$ be the class of ultrametric spaces which are weakly similar to ultrametric space $(X, d)$. The main results of the paper completely describe the ultrametric spaces $(X, d)$ for which the equality $$ ρ(x, y) = f(d(Φ(x), Φ(y))) $$ holds for every $(Y, ρ) \in WS(X, d)$, every weak similarity $Φ\colon Y \to X$, and all $x$, $y \in Y$ with some ultrametric (pseudoultrametric) preserving function $f$ depending on $Φ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源