论文标题
超级保存功能和超级空间的弱相似性
Ultrametric preserving functions and weak similarities of ultrametric spaces
论文作者
论文摘要
令$ ws(x,d)$为一类超量学空间,与超级空间$(x,d)$相似。本文的主要结果完全描述了超级空间$(x,d)$,其平等$ρ(x,y)= f(d(φ(x),φ(y))$$在ws(y,ρ)\ in WS(x,x,d)$中都保留,每个弱相似$ y y y y $ y $ \ y $ (Pseudoultrametric)保存功能$ f $,具体取决于$φ$。
Let $WS(X, d)$ be the class of ultrametric spaces which are weakly similar to ultrametric space $(X, d)$. The main results of the paper completely describe the ultrametric spaces $(X, d)$ for which the equality $$ ρ(x, y) = f(d(Φ(x), Φ(y))) $$ holds for every $(Y, ρ) \in WS(X, d)$, every weak similarity $Φ\colon Y \to X$, and all $x$, $y \in Y$ with some ultrametric (pseudoultrametric) preserving function $f$ depending on $Φ$.