论文标题
黑洞质量和恒星质量之间的相关性,用于古典凸起和椭圆形的核心
The Correlation between Black Hole Mass and Stellar Mass for Classical Bulges and the Cores of Ellipticals
论文作者
论文摘要
自发现以来,黑洞质量与隆起的隆起的恒星质量之间的相关性引起了人们的关注。尽管对这种相关性的传统调查已将椭圆星系视为单一整体球体,但最近认识到,巨大的椭圆形星系已经发生了很大的延迟时间($ z \ lyssim 2 $ 2 $),因为它们最初的“红色块”最初密集地表明,与当前日埃利普特的延伸相关,他们的范围与他们的范围相关,他们的延伸仅与他们的范围相关。我们对两个微米的所有天空调查进行二维图像分解$ k_s $ - 带图像,以衍生出35个附近椭圆形的核心的恒星质量,并具有可靠测量的黑洞质量。我们通过将经典凸起与椭圆形的核心结合在一起来重新审视黑洞质量和凸出恒星质量之间的关系。新的关系表现出几乎相同的斜率($ m _ {\ bullet} \ propto m _ {\ text {core}}}^{1.2} $)与常规关系,但$ \ sim2 $较高的归一化和中等程度更大的内在散布(0.4 dex)。核心质量为$ 10^{11} \,m _ {\ odot} $,$ m _ {\ bullet}/m _ {\ text {core}} = 0.9 \%$,但它上升至$ m _ {\ bulter}/m _ { $ 10^{12} \,m _ {\ odot} $。快速和缓慢的旋转器椭圆形遵循相同的相关性。 $ m _ {\ bullet} -m _ {\ text {core}} $关系为研究高红色速度宇宙中的黑洞 - 果实共同进化提供了修订的基准。
The correlation between black hole mass and the stellar mass of the bulge of the host galaxy has attracted much attention ever since its discovery. While traditional investigations of this correlation have treated elliptical galaxies as single, monolithic spheroids, the recent realization that massive elliptical galaxies have undergone significant late-time ($z \lesssim 2$) dissipationless assembly since their initially dense "red nugget" phase strongly suggests that black holes in present-day ellipticals should be associated only with their cores and not with their extended envelopes. We perform two-dimensional image decomposition of Two Micron All Sky Survey $K_s$-band images to derive the stellar mass of the cores of 35 nearby ellipticals with reliably measured black hole masses. We revisit the relation between black hole mass and bulge stellar mass by combining classical bulges with the cores of ellipticals. The new relation exhibits nearly identical slope ($M_{\bullet} \propto M_{\text{core}}^{1.2}$) as the conventional relation but a factor of $\sim2$ higher normalization and moderately larger intrinsic scatter (0.4 dex). At a core mass of $10^{11}\,M_{\odot}$, $M_{\bullet}/M_{\text{core}} = 0.9\%$, but it rises to $M_{\bullet}/M_{\text{core}}=1.5\%$ for the most massive cores with mass $10^{12}\,M_{\odot}$. Fast and slow rotator ellipticals follow the same correlation. The $M_{\bullet}-M_{\text{core}}$ relation provides a revised benchmark for studies of black hole-galaxy coevolution in the high-redshift Universe.