论文标题
启用大规模的凝结相杂交密度理论基于$ ab $ $ $ $ $ $ $ $ $ $分子动力学II:对等亚质合体和等质 - 等热合奏的扩展
Enabling Large-Scale Condensed-Phase Hybrid Density Functional Theory Based $Ab$ $Initio$ Molecular Dynamics II: Extensions to the Isobaric-Isoenthalpic and Isobaric-Isothermal Ensembles
论文作者
论文摘要
在本系列的上一篇论文[JCTC 2020,16,3757]中,我们基于占用空间的局部表示,提出了一个理论和算法框架,该框架利用了在有限间隙系统中EXX相互作用的真实空间评估中固有的稀疏性。这伴随着对EXX的详细描述,EXX是量子意式浓缩咖啡中这种方法的大规模平行混合MPI/OpenMP实现,可以在NVE/NVT中基于线性缩放混合DFT的目标,该目标在凝结的相机的NVT/NVT综合体中,包含固定的或含有500--1000原子的凝结 - 含量为500--1000个原子(与固定的light lime-ltime Climi collabial time collabial time collabial collabial timi collabial timi to wall to wall to wall to wall to wall to wall)在这项工作中,我们扩展了EXX,以实现NPH/NPT组合中具有一般和波动细胞的大规模冷凝相系统的混合DFT AIMD。我们的理论扩展包括EXX对具有计算复杂性系统中系统中应力张量的贡献的分析推导,其计算复杂性与系统大小线性缩放。相应的算法扩展到EXX包括:(i)通过非正交晶格对称对称的静态/波动细胞,(ii)通过自动选择在普通细胞中求解Poisson的方程。张量。我们还通过ICE IH,II和III以及环境液水进行了批判性地评估了几个不同HPC体系结构的扩展EXX模块的计算性能。我们发现,扩展的EXX可以以可忽略不计的成本(<1%)评估EXX对应力张量的贡献,并保持高度扩展,从而使我们更接近常规执行混合DFT的目标,用于基于混合DFT的目标,用于在各种热力学条件下对大规模凝结相位系统的大规模凝结相系统。
In the previous paper of this series [JCTC 2020, 16, 3757], we presented a theoretical and algorithmic framework based on a localized representation of the occupied space that exploits the inherent sparsity in the real-space evaluation of the EXX interaction in finite-gap systems. This was accompanied by a detailed description of exx, a massively parallel hybrid MPI/OpenMP implementation of this approach in Quantum ESPRESSO that enables linear-scaling hybrid DFT based AIMD in the NVE/NVT ensembles of condensed-phase systems containing 500--1000 atoms (in fixed orthorhombic cells) with a wall time cost comparable to semi-local DFT. In this work, we extend exx to enable hybrid DFT based AIMD of large-scale condensed-phase systems with general and fluctuating cells in the NpH/NpT ensembles. Our theoretical extension includes an analytical derivation of the EXX contribution to the stress tensor for systems in general cells with a computational complexity that scales linearly with system size. The corresponding algorithmic extensions to exx include optimized routines that: (i) handle static/fluctuating cells with non-orthogonal lattice symmetries, (ii) solve Poisson's equation in general cells via an automated selection of the auxiliary grid directions in the Natan-Kronik representation of the discrete Laplacian operator, and (iii) evaluate the EXX contribution to the stress tensor. We also critically assess the computational performance of the extended exx module across several different HPC architectures via case studies on ice Ih, II, and III as well as ambient liquid water. We find that the extended exx can evaluate the EXX contribution to the stress tensor with negligible cost (< 1%) and remains highly scalable, thereby bringing us another step closer to routinely performing hybrid DFT based AIMD for large-scale condensed-phase systems across a wide range of thermodynamic conditions.