论文标题
使用FEFET多位内容 - 可调地理记忆的内存中最近的邻居搜索
In-Memory Nearest Neighbor Search with FeFET Multi-Bit Content-Addressable Memories
论文作者
论文摘要
在许多应用程序中,最近的邻居(NN)搜索是必不可少的操作,例如一个/少数图像分类和图像分类。因此,非常需要快速和低能的硬件支持,以进行准确的NN搜索。已经提出了三元含量可调的记忆(TCAM),以通过实现$ L_ \ infty $和锤击距离指标来加速NN搜索几次学习任务,但它们无法实现软件可靠的准确性。本文提出了一个新的距离函数,可以用基于铁电Fets(FEFET)的多位含量构成记忆(MCAM)对本机进行评估,以执行单步,内存中的NN搜索。此外,这种方法可以实现与用于NN分类和一项/少量学习任务的软件中的浮点精度实现相当的精度。例如,提出的方法可用于5次MCAM的Omniglot数据集(仅基于软件的实现,仅比基于软件的实现低0.8%)的5次5次分类任务达到98.34%的精度。这比基于ISO-Energy和ISO-Delay的基于最先进的TCAM实现的精度提高了13%。提出的距离函数对FEFET设备到设备变化的影响有弹性。此外,这项工作在实验上展示了使用GlobalFoundries和Arrays的Fefet MCAM的2位实现,以进一步验证概念证明。
Nearest neighbor (NN) search is an essential operation in many applications, such as one/few-shot learning and image classification. As such, fast and low-energy hardware support for accurate NN search is highly desirable. Ternary content-addressable memories (TCAMs) have been proposed to accelerate NN search for few-shot learning tasks by implementing $L_\infty$ and Hamming distance metrics, but they cannot achieve software-comparable accuracies. This paper proposes a novel distance function that can be natively evaluated with multi-bit content-addressable memories (MCAMs) based on ferroelectric FETs (FeFETs) to perform a single-step, in-memory NN search. Moreover, this approach achieves accuracies comparable to floating-point precision implementations in software for NN classification and one/few-shot learning tasks. As an example, the proposed method achieves a 98.34% accuracy for a 5-way, 5-shot classification task for the Omniglot dataset (only 0.8% lower than software-based implementations) with a 3-bit MCAM. This represents a 13% accuracy improvement over state-of-the-art TCAM-based implementations at iso-energy and iso-delay. The presented distance function is resilient to the effects of FeFET device-to-device variations. Furthermore, this work experimentally demonstrates a 2-bit implementation of FeFET MCAM using AND arrays from GLOBALFOUNDRIES to further validate proof of concept.