论文标题

GMM的广义集中信息标准

A Generalized Focused Information Criterion for GMM

论文作者

Chang, Minsu, DiTraglia, Francis J.

论文摘要

本文提出了同时GMM模型和力矩选择的标准:广义集中信息标准(GFIC)。 GIF并没有尝试识别“真实”规范,而是从一组可能错误指定的力矩条件和参数限制中选择,以最大程度地减少用户指定目标参数的均值误差(MSE)。 GFIC的目的是使应用实践中常见的情况形式化。应用的研究人员首先是一组相当弱的“基线”假设,假设是正确的,并且必须决定是否施加了一些更强大,更具争议的“可疑”假设,这些假设会产生参数限制,额外的力矩条件,或两者兼而有之。前提是基线假设确定了模型,我们将展示如何构造渐近MSE的渐近公正估计量,以选择这些可疑假设:GFIC。我们继续为选择后推断和模型平均提供结果,这些结果既可以应用于GFIC和各种替代选择标准。为了说明如何在实践中使用我们的标准,我们将GFIC专门用于在动态面板模型中选择外观性假设和滞后长度的问题,并表明它在模拟中表现良好。最后,我们将GFIC应用于动态面板数据模型,以获得香烟需求的价格弹性。

This paper proposes a criterion for simultaneous GMM model and moment selection: the generalized focused information criterion (GFIC). Rather than attempting to identify the "true" specification, the GFIC chooses from a set of potentially mis-specified moment conditions and parameter restrictions to minimize the mean-squared error (MSE) of a user-specified target parameter. The intent of the GFIC is to formalize a situation common in applied practice. An applied researcher begins with a set of fairly weak "baseline" assumptions, assumed to be correct, and must decide whether to impose any of a number of stronger, more controversial "suspect" assumptions that yield parameter restrictions, additional moment conditions, or both. Provided that the baseline assumptions identify the model, we show how to construct an asymptotically unbiased estimator of the asymptotic MSE to select over these suspect assumptions: the GFIC. We go on to provide results for post-selection inference and model averaging that can be applied both to the GFIC and various alternative selection criteria. To illustrate how our criterion can be used in practice, we specialize the GFIC to the problem of selecting over exogeneity assumptions and lag lengths in a dynamic panel model, and show that it performs well in simulations. We conclude by applying the GFIC to a dynamic panel data model for the price elasticity of cigarette demand.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源