论文标题
TW Hya Rosetta Stone项目II:甲醛的空间分辨出在低温气相形成下的提示
The TW Hya Rosetta Stone Project II: Spatially resolved emission of formaldehyde hints at low-temperature gas-phase formation
论文作者
论文摘要
甲醛(h $ _2 $ co)是甲醇等有机物($ _3 $ oh)的重要先驱。重要的是要了解在恒星和行星形成期间产生H $ _2 $ CO和益生元分子的条件。 H $ _2 $ CO具有气相和固态地层途径,涉及UV生产的自由基前体或Co冰和冷($ \ Lessim 20 $ K)尘埃谷物。为了了解哪种途径占主导地位,气态H $ _2 $ CO的Ortho-Para比率(OPR)已用作探针,值为3表示“温暖”条件,$ <3 $链接到固体中的冷形成。我们介绍了在TW hya Protoplanetary磁盘中的多个Ortho-和para-h $ _2 $ CO转换的空间解决的ALMA观察结果,以测试行星形成期间的H $ _2 $ CO形成理论。我们发现磁盘平均旋转温度和列密度为$ 33 \ pm2 $ k,($ 1.1 \ pm0.1)\ times10^{12} $ cm $^{ - 2} $和$ 25 \ pm2 $ k,$(4.4 \ pm0.3) para-h $ _2 $ co,分别为$ 2.49 \ pm0.23 $的OPR。径向解析的分析表明,观察到的H $ _2 $ CO主要在30-40 K的旋转温度下排放,对应于$ z/r \ ge0.25 $的层。 OPR与60 au(卵石磁盘的程度)一致,并将超过60 au降低至$ 2.0 \ pm0.5 $。后者对应于12 K的自旋温度,远低于旋转温度。相对均匀的发射条件,OPR中的径向梯度以及升华后OPR比的最新实验实验和理论的结合,使我们推测,在TW YHYA磁盘上观察到的H $ _2 $ CO是造成观察到的H $ _2 $ CO的原因。
Formaldehyde (H$_2$CO) is an important precursor to organics like methanol (CH$_3$OH). It is important to understand the conditions that produce H$_2$CO and prebiotic molecules during star and planet formation. H$_2$CO possesses both gas-phase and solid-state formation pathways, involving either UV-produced radical precursors or CO ice and cold ($\lesssim 20$ K) dust grains. To understand which pathway dominates, gaseous H$_2$CO's ortho-to-para ratio (OPR) has been used as a probe, with a value of 3 indicating "warm" conditions and $<3$ linked to cold formation in the solid-state. We present spatially resolved ALMA observations of multiple ortho- and para-H$_2$CO transitions in the TW Hya protoplanetary disk to test H$_2$CO formation theories during planet formation. We find disk-averaged rotational temperatures and column densities of $33\pm2$ K, ($1.1\pm0.1)\times10^{12}$ cm$^{-2}$ and $25\pm2$ K, $(4.4\pm0.3)\times10^{11}$ cm$^{-2}$ for ortho- and para-H$_2$CO, respectively, and an OPR of $2.49\pm0.23$. A radially resolved analysis shows that the observed H$_2$CO emits mostly at rotational temperatures of 30-40 K, corresponding to a layer with $z/R\ge0.25$. The OPR is consistent with 3 within 60 au, the extent of the pebble disk, and decreases beyond 60 au to $2.0\pm0.5$. The latter corresponds to a spin temperature of 12 K, well below the rotational temperature. The combination of relatively uniform emitting conditions, a radial gradient in the OPR, and recent laboratory experiments and theory on OPR ratios after sublimation, lead us to speculate that gas-phase formation is responsible for the observed H$_2$CO across the TW Hya disk.