论文标题

在完整图上的一类正交不变的量子自旋系统上

On a class of orthogonal-invariant quantum spin systems on the complete graph

论文作者

Ryan, Kieran

论文摘要

我们在完整图上研究了量子自旋系统的两参数家族,这是复杂正交组下最不变的模型。在spin $ s = \ frac {1} {2} $中,它等同于xxz模型,在spin $ s = 1 $中,biinear-biquadratic heisenberg模型。该论文是由Björnberg的工作激发的,Björnberg的工作是在(较大)复杂的一般线性组下不变的。在spin $ s = \ frac {1} {2} $和$ s = 1 $中,我们给出了两个参数的所有值的自由能的明确公式,而对于一个参数为非阴性,则为spin $ s> 1 $提供。这使我们能够绘制相图并确定临界温度。 For spin $S=\frac{1}{2}$ and $S=1$, we give the left and right derivatives as the strength parameter of a certain magnetisation term tends to zero, and we give a formula for a certain total spin observable, and heuristics for the set of extremal Gibbs states in several regions of the phase diagrams, in the style of a recent paper of Björnberg, Fr​​öhlich and Ueltschi。 关键的技术工具是根据对称组和Brauer代数的不可约特征来表达分区功能。所考虑的参数包括并超越系统具有概率表示作为互换过程的参数。

We study a two-parameter family of quantum spin systems on the complete graph, which is the most general model invariant under the complex orthogonal group. In spin $S=\frac{1}{2}$ it is equivalent to the XXZ model, and in spin $S=1$ to the bilinear-biquadratic Heisenberg model. The paper is motivated by the work of Björnberg, whose model is invariant under the (larger) complex general linear group. In spin $S=\frac{1}{2}$ and $S=1$ we give an explicit formula for the free energy for all values of the two parameters, and for spin $S>1$ for when one of the parameters is non-negative. This allows us to draw phase diagrams, and determine critical temperatures. For spin $S=\frac{1}{2}$ and $S=1$, we give the left and right derivatives as the strength parameter of a certain magnetisation term tends to zero, and we give a formula for a certain total spin observable, and heuristics for the set of extremal Gibbs states in several regions of the phase diagrams, in the style of a recent paper of Björnberg, Fröhlich and Ueltschi. The key technical tool is expressing the partition function in terms of the irreducible characters of the symmetric group and the Brauer algebra. The parameters considered include, and go beyond, those for which the systems have probabilistic representations as interchange processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源