论文标题

对简单产物的小覆盖物的微弱覆盖物分类

Weakly Equivariant Classification of Small Covers over a Product of Simplicies

论文作者

İlhan, Aslı Güçlükan, Gürbüzer, S. Kaan

论文摘要

给定尺寸函数$ω$,我们定义了一个$ω$ - 向量加权挖掘的概念和它们之间的$ω$ - 等价性。然后,我们在弱$(\ Mathbb {z}/2)^n $ - equivariant同型同型类别之间建立了两者的培养,超过$δ^{n_1} \ times \ cdots \ times + timesδ^{n_k} $和$ω$ - equivalence类别的$ - $ω$ - $ω$ - $ω$ - $ω$ - $ω$ - $ω$ - 例如,我们获得了一个弱$(\ mathbb {z}/2)^n $ - equivariant同构类别的小型封面的公式(\ mathbb {z}/2)^n $ - equivariant同构类别。

Given a dimension function $ω$, we define a notion of an $ω$-vector weighted digraph and an $ω$-equivalence between them. Then we establish a bijection between the weakly $(\mathbb{Z}/2)^n$-equivariant homeomorphism classes of small covers over $Δ^{n_1}\times\cdots \times Δ^{n_k}$ and the set of $ω$-equivalence classes of $ω$-vector weighted digraphs with $k$-labeled vertices. As an example, we obtain a formula for the number of weakly $(\mathbb{Z}/2)^n$-equivariant homeomorphism classes of small covers over a product of three simplices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源