论文标题
内存两个重复游戏中的零确定策略
Memory-two zero-determinant strategies in repeated games
论文作者
论文摘要
重复的游戏提供了一个解释,即使在囚犯困境中的一次性游戏中叛逃更有利,如何实现相互合作。最近发现,在进化游戏理论中已经研究了零确定的策略。原始内存 - 一项零确定的策略单方面通过平均收益之间的线性关系。在这里,我们将零确定策略的概念扩展到了重复游戏中的内存两个策略。内存两个零确定的策略单方面在上一轮的收益和回报的相关函数之间执行线性关系。在重复的囚犯的困境游戏中提供了记忆 - 两项零确定的策略的示例,其中一些将tit-tat-tat策略推广到记忆两个案件。将零确定策略扩展到内存 - $ n $ case with $ n \ geq 2 $也很简单。
Repeated games have provided an explanation how mutual cooperation can be achieved even if defection is more favorable in a one-shot game in prisoner's dilemma situation. Recently found zero-determinant strategies have substantially been investigated in evolutionary game theory. The original memory-one zero-determinant strategies unilaterally enforce linear relations between average payoffs of players. Here, we extend the concept of zero-determinant strategies to memory-two strategies in repeated games. Memory-two zero-determinant strategies unilaterally enforce linear relations between correlation functions of payoffs and payoffs at the previous round. Examples of memory-two zero-determinant strategy in the repeated prisoner's dilemma game are provided, some of which generalize the Tit-for-Tat strategy to memory-two case. Extension of zero-determinant strategies to memory-$n$ case with $n\geq 2$ is also straightforward.