论文标题

具有自动参数估计的流行病学隔室模型,并预测了COVID-19的传播,并分析了来自德国和巴西的数据

An epidemiological compartmental model with automated parameter estimation and forecasting of the spread of COVID-19 with analysis of data from Germany and Brazil

论文作者

Batista, Adriano A., da Silva, Severino Horácio

论文摘要

在这项工作中,我们适应了流行病学的先生模型,以研究Covid-19在德国和巴西的传播的演变(在全国范围内,位于帕拉巴州和坎皮纳·格兰德市)。我们证明了模型动力学对其参数的良好姿势及其连续依赖性。我们还提出了一种简单的概率方法,用于活性病例的演变,该方法有助于自动估计流行病学模型的参数。我们获得了基于概率方法和确认案例数据的活动病例的统计估计。从这个估计的时间序列中,我们获得了依赖时间的传染率,这反映了所涉及人群对社会疏远的依从性较低或更高。通过分析每日死亡的数据,我们获得了每日的致死率和恢复率。然后,我们使用这些时间依赖的参数集成了模型的运动方程。我们通过与理论预测的大流行有关的确认,恢复,死亡和活性病例的官方数据拟合官方数据来验证我们的流行病学模型。使用此方法,我们获得了非常好的数据。此处开发的自动化程序可用于基本上任何具有最少额外工作的人群。最后,我们还提出并验证一种基于马尔可夫链的预测方法,用于在长达两周的时间内流行病学数据的演变。

In this work, we adapt the epidemiological SIR model to study the evolution of the dissemination of COVID-19 in Germany and Brazil (nationally, in the State of Paraiba, and in the City of Campina Grande). We prove the well posedness and the continuous dependence of the model dynamics on its parameters. We also propose a simple probabilistic method for the evolution of the active cases that is instrumental for the automatic estimation of parameters of the epidemiological model. We obtained statistical estimates of the active cases based the probabilistic method and on the confirmed cases data. From this estimated time series we obtained a time-dependent contagion rate, which reflects a lower or higher adherence to social distancing by the involved populations. By also analysing the data on daily deaths, we obtained the daily lethality and recovery rates. We then integrate the equations of motion of the model using these time-dependent parameters. We validate our epidemiological model by fitting the official data of confirmed, recovered, death, and active cases due to the pandemic with the theoretical predictions. We obtained very good fits of the data with this method. The automated procedure developed here could be used for basically any population with a minimum of extra work. Finally, we also propose and validate a forecasting method based on Markov chains for the evolution of the epidemiological data for up to two weeks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源