论文标题

自然语言处理以使用深度学习来检测电子健康记录中的认知问题

Natural Language Processing to Detect Cognitive Concerns in Electronic Health Records Using Deep Learning

论文作者

Hong, Zhuoqiao, Magdamo, Colin G., Sheu, Yi-han, Mohite, Prathamesh, Noori, Ayush, Ye, Elissa M., Ge, Wendong, Sun, Haoqi, Brenner, Laura, Robbins, Gregory, Mukerji, Shibani, Zafar, Sahar, Benson, Nicole, Moura, Lidia, Hsu, John, Hyman, Bradley T., Westover, Michael B., Blacker, Deborah, Das, Sudeshna

论文摘要

痴呆症在社区中被低估,在医疗保健专业人员中未诊断,并且在索赔数据中编码不足。但是,有关认知功能障碍的信息经常在医疗记录中的非结构化临床医生注释中找到,但是专家的手动审查很耗时,而且通常容易出现错误。这些票据的自动化开采提供了一个潜在的机会,可以将具有认知问题的患者标记,这些患者可以从评估中受益或被转诊为专业护理。为了确定电子病历中具有认知问题的患者,我们应用了自然语言处理(NLP)算法,并将模型性能与仅使用结构化诊断代码和药物数据的基线模型进行了比较。基于注意力的深度学习模型的表现优于基线模型和其他更简单的模型。

Dementia is under-recognized in the community, under-diagnosed by healthcare professionals, and under-coded in claims data. Information on cognitive dysfunction, however, is often found in unstructured clinician notes within medical records but manual review by experts is time consuming and often prone to errors. Automated mining of these notes presents a potential opportunity to label patients with cognitive concerns who could benefit from an evaluation or be referred to specialist care. In order to identify patients with cognitive concerns in electronic medical records, we applied natural language processing (NLP) algorithms and compared model performance to a baseline model that used structured diagnosis codes and medication data only. An attention-based deep learning model outperformed the baseline model and other simpler models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源