论文标题

用中等非线性增强光子量子计算

Boosting photonic quantum computation with moderate nonlinearity

论文作者

Pick, Adi, Siddiqui-Matekole, Elisha, Aqua, Ziv, Guendelman, Gabriel, Firstenberg, Ofer, Dowling, Jonathan P., Dayan, Barak

论文摘要

基于光子测量的量子计算(MBQC)是通向耐断层通用量子计算的有前途的途径。这项工作中的一个核心挑战是使用概率线性镜门构建大型光子簇所需的资源所需的巨大开销。尽管理想情况下,强大的单光子非线性可以实现此类群集的确定性结构,但以可扩展的方式实现这一挑战。在这里,我们探讨了使用中等非线性(有条件的相移小于$π$)来增强光子量子计算并大大减少其资源开销的前景。我们方案中的关键要素是一个非线性路由器,该路由器优先将光子波袋根据其强度定向到不同的输出端口。作为一个相关的例子,我们分析了Rydberg Blockade在Atomic合奏中提供的非线性,其中对非线性和随附的损失之间的权衡得到充分了解。我们提出了有效的铃铛测量和GHz状态制备的方案 - 群集状态的构建中的关键要素以及CNOT门和量子分解。考虑到大量涉及耐故障MBQC的纠缠操作,我们的协议已经以中等非线性提供的协议提供的成功概率增加可能会导致所需资源的急剧减少。

Photonic measurement-based quantum computation (MBQC) is a promising route towards fault-tolerant universal quantum computing. A central challenge in this effort is the huge overhead in the resources required for the construction of large photonic clusters using probabilistic linear-optics gates. Although strong single-photon nonlinearity ideally enables deterministic construction of such clusters, it is challenging to realise in a scalable way. Here we explore the prospects of using moderate nonlinearity (with conditional phase shifts smaller than $π$) to boost photonic quantum computing and significantly reduce its resources overhead. The key element in our scheme is a nonlinear router that preferentially directs photonic wavepackets to different output ports depending on their intensity. As a relevant example, we analyze the nonlinearity provided by Rydberg blockade in atomic ensembles, in which the trade-off between the nonlinearity and the accompanying loss is well understood. We present protocols for efficient Bell measurement and GHZ-state preparation -- both key elements in the construction of cluster states, as well as for the CNOT gate and quantum factorization. Given the large number of entangling operations involved in fault-tolerant MBQC, the increase in success probability provided by our protocols already at moderate nonlinearity can result in a dramatic reduction in the required resources.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源