论文标题

线性阈值模型下的在线影响最大化

Online Influence Maximization under Linear Threshold Model

论文作者

Li, Shuai, Kong, Fang, Tang, Kejie, Li, Qizhi, Chen, Wei

论文摘要

在线影响最大化(OIM)是社交网络中的一个流行问题,可以学习影响传播模型参数并同时最大化影响力传播。大多数先前的研究都集中在边缘级反馈下的独立级联模型(IC)模型。在本文中,我们在线性阈值(LT)模型中介绍了OIM。由于LT模型中的节点激活是由于所有活性邻居的汇总效应所致,因此使用节点级反馈对OIM进行建模更为自然。这给在线学习带来了新的挑战,因为我们只观察到节点组的综合效果,并且组也是随机的。基于节点激活中的线性结构,我们结合了来自线性匪徒的想法,并设计了与观察到的反馈一致的算法LT-Linucb。通过证明群体观察调制(GOM)有界平滑度属性,这是随机观察的影响差异的新结果,我们对订单$ \ tilde {o}(\ Mathrm {poly}(m)\ sqrt {t})$的遗憾感到遗憾这是LT模型下OIM的第一个理论结果。最后,我们还提供了一种算法的OIM-ETC,其后悔绑定的$ O(\ Mathrm {poly}(m)\ t^{2/3})$,它是模型独立的,简单的,对在线反馈和离线计算的要求较少。

Online influence maximization (OIM) is a popular problem in social networks to learn influence propagation model parameters and maximize the influence spread at the same time. Most previous studies focus on the independent cascade (IC) model under the edge-level feedback. In this paper, we address OIM in the linear threshold (LT) model. Because node activations in the LT model are due to the aggregated effect of all active neighbors, it is more natural to model OIM with the node-level feedback. And this brings new challenge in online learning since we only observe aggregated effect from groups of nodes and the groups are also random. Based on the linear structure in node activations, we incorporate ideas from linear bandits and design an algorithm LT-LinUCB that is consistent with the observed feedback. By proving group observation modulated (GOM) bounded smoothness property, a novel result of the influence difference in terms of the random observations, we provide a regret of order $\tilde{O}(\mathrm{poly}(m)\sqrt{T})$, where $m$ is the number of edges and $T$ is the number of rounds. This is the first theoretical result in such order for OIM under the LT model. In the end, we also provide an algorithm OIM-ETC with regret bound $O(\mathrm{poly}(m)\ T^{2/3})$, which is model-independent, simple and has less requirement on online feedback and offline computation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源