论文标题

基于卷积自动编码器的OFDM系统的低PAPR波形设计

Low PAPR waveform design for OFDM SYSTEM based on Convolutional Auto-Encoder

论文作者

Huleihel, Yara, Ben-Dror, Eilam, Permuter, Haim H.

论文摘要

本文介绍了卷积自动编码器(CAE)的架构,用于峰值与平均功率比(PAPR)降低和波形设计,用于正交频施加多路复用(OFDM)系统。所提出的体系结构集成了PAPR还原块和非线性高功率放大器(HPA)模型。我们将逐渐的损失学习用于多目标优化。我们通过检查位错误率(BER),PAPR和光谱响应,并将其与常见的PAPR还原算法进行比较来分析模型性能。

This paper introduces the architecture of a convolutional autoencoder (CAE) for the task of peak-to-average power ratio (PAPR) reduction and waveform design, for orthogonal frequency division multiplexing (OFDM) systems. The proposed architecture integrates a PAPR reduction block and a non-linear high power amplifier (HPA) model. We apply gradual loss learning for multi-objective optimization. We analyze the models performance by examining the bit error rate (BER), the PAPR and the spectral response, and comparing them with common PAPR reduction algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源